OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 12 — Sep. 30, 2010

Polarimetry-based method to extract geometry-independent metrics of tissue anisotropy

Marika A. Wallenburg, Michael F. G. Wood, Nirmalya Ghosh, and I. Alex Vitkin  »View Author Affiliations

Optics Letters, Vol. 35, Issue 15, pp. 2570-2572 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (219 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, we have used polarimetry as a method for assessing the linear retardance of infarcted myocardium. While linear retardance reflects tissue anisotropy, experimental geometry has a confounding effect due to dependence of the linear retardance on the orientation of the sample with respect to the probing beam. Here, polarimetry imaging of an 8 mm diameter birefringent polystyrene sphere of known anisotropy axis was used to test a dual-projection method by which the anisotropy axis and its true magnitude can be reconstructed, thus eliminating the confounding effect of anisotropy axis orientation. Feasibility is demonstrated in ex-vivo tissue imaging.

© 2010 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 19, 2010
Revised Manuscript: June 8, 2010
Manuscript Accepted: July 1, 2010
Published: July 22, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Marika A. Wallenburg, Michael F. G. Wood, Nirmalya Ghosh, and I. Alex Vitkin, "Polarimetry-based method to extract geometry-independent metrics of tissue anisotropy," Opt. Lett. 35, 2570-2572 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ramella-Roman, K. Lee, S. Prahl, and S. Jacques, J. Biomed Opt. 9, 1305 (2004). [CrossRef] [PubMed]
  2. Z. Tannous, M. Al-Arashi, S. Shah, and A. Yaroslavsky, Lasers Surg. Med. 41, 10 (2009). [CrossRef] [PubMed]
  3. P. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Naffulli, Phys. Med. Biol. 55, 3777 (2010). [CrossRef] [PubMed]
  4. M. van Turnhout, S. Kranenbarg, and J. van Leeuwen, J. Biomed Opt. 14, 054018 (2009). [CrossRef] [PubMed]
  5. X. Li and G. Yao, Appl. Opt. 48, 2625 (2009). [CrossRef] [PubMed]
  6. N. Ghosh, M. Wood, S. Li, R. Weisel, B. Wilson, R. Li, and I. A. Vitkin, J. Biophoton. 2, 145 (2009). [CrossRef]
  7. M. Wood, N. Ghosh, M. A. Wallenburg, S. Li, R. Weisel, B. Wilson, R. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted and stem cell treated regenerating cardiac tissues,” J. Biomed Opt. (to be published).
  8. B. Saleh and M. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).
  9. N. Ugryumova, J. Jacobs, M. Bonesi, and S. J. Matcher, Osteoarthr. Cartil. 17, 33 (2009). [CrossRef]
  10. M. A. Wallenburg, M. Pop, M. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, J. Innov. Opt. Health Sci. 3, 109 (2010). [CrossRef]
  11. N. Ghosh, M. Wood, and I. A. Vitkin, J. Biomed Opt. 13, 044036 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited