OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

All-fiber microcantilever sensor monitored by a low-cost fiber-to-tip structure with subnanometer resolution

Lei Su and S. R. Elliott  »View Author Affiliations

Optics Letters, Vol. 35, Issue 8, pp. 1212-1214 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a low-cost, high-sensitivity, all-fiber microcantilever sensor, a fiber-to-tip microcantilever sensor (FTMS). In this sensor, a nanosize fiber tip serves as both microcantilever and miniaturized light probe. Subnanometer displacements of the fiber-tip cantilever are expected to be registered by measuring the light intensity that it receives from a collinearly aligned single-mode fiber (SMF). We found that the cantilever-displacement curve is defined by the Gaussian profile of the fundamental mode, HE 11 , guided in the aligned SMF. An FTMS vibration sensor has been implemented as an example of the technique, exhibiting an estimated resolution of 2 Å. The FTMS should open new ways of inexpensive fiber-optic microcantilever sensing.

© 2010 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 19, 2010
Revised Manuscript: March 4, 2010
Manuscript Accepted: March 5, 2010
Published: April 15, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Lei Su and S. R. Elliott, "All-fiber microcantilever sensor monitored by a low-cost fiber-to-tip structure with subnanometer resolution," Opt. Lett. 35, 1212-1214 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004). [CrossRef]
  2. P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, Science 277, 1799 (1997). [CrossRef]
  3. S. Kelling, F. Paoloni, J. Z. Huang, V. P. Ostanin, and S. R. Elliott, Rev. Sci. Instrum. 80, 093101 (2009). [CrossRef] [PubMed]
  4. Z. Y. Miao, Q. C. Zhang, Z. Y. Guo, X. P. Wu, and D. P. Chen, Opt. Lett. 32, 594 (2007). [CrossRef] [PubMed]
  5. K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, J. Lightwave Technol. 24, 2132 (2006). [CrossRef]
  6. M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur, Appl. Phys. Lett. 87, 051106 (2005). [CrossRef]
  7. D. Iannuzzi, S. Deladi, V. J. Gadgil, R. G. P. Sanders, H. Schreuders, and M. C. Elwenspoek, Appl. Phys. Lett. 88, 053501 (2006). [CrossRef]
  8. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002). [CrossRef]
  9. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003). [CrossRef] [PubMed]
  10. G. A. Valaskovic, M. Holton, and G. H. Morrison, Appl. Opt. 34, 1215 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited