OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media

Angelo Sassaroli  »View Author Affiliations

Optics Letters, Vol. 36, Issue 11, pp. 2095-2097 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a two-step Monte Carlo (MC) method that is used to solve the radiative transfer equation in heterogeneous turbid media. The method exploits the one-to-one correspondence between the seed value of a random number generator and the sequence of random numbers. In the first step, a full MC simulation is run for the initial distribution of the optical properties and the “good” seeds (the ones leading to detected photons) are stored in an array. In the second step, we run a new MC simulation with only the good seeds stored in the first step, i.e., we propagate only detected photons. The effect of a change in the optical properties is calculated in a short time by using two scaling relationships. By this method we can increase the speed of a simulation up to a factor of 1300 in typical situations found in near-IR tissue spectroscopy and diffuse optical tomography, with a minimal requirement for hard disk space. Potential applications of this method for imaging of turbid media and the inverse problem are discussed.

© 2011 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(290.1990) Scattering : Diffusion
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 9, 2011
Revised Manuscript: April 15, 2011
Manuscript Accepted: May 5, 2011
Published: May 31, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Angelo Sassaroli, "Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media," Opt. Lett. 36, 2095-2097 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. C. Wilson and G. Adam, Med. Phys. 10, 824 (1983). [CrossRef] [PubMed]
  2. L. Wang, S. L. Jacques, and L. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995). [CrossRef] [PubMed]
  3. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, IEEE Trans. Biomed. Eng. 36, 1162 (1989). [CrossRef] [PubMed]
  4. R. Graaff, M. H. Koelink, F. F. M. Demul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Aarnoudse, Appl. Opt. 32, 426 (1993). [CrossRef] [PubMed]
  5. A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, Appl. Opt. 37, 2774 (1998). [CrossRef]
  6. A. Kienle and M. S. Patterson, Phys. Med. Biol. 41, 2221 (1996). [CrossRef] [PubMed]
  7. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, Opt. Lett. 26, 1335 (2001). [CrossRef]
  8. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, Opt. Express 10, 159 (2002). [PubMed]
  9. E. Margallo-Balbás and P. J. French, Opt. Express 15, 14086 (2007). [CrossRef] [PubMed]
  10. H. Shen and G. Wang, Phys. Med. Biol. 55, 947 (2010). [CrossRef] [PubMed]
  11. Q. Fang and D. A. Boas, Opt. Express 17, 20178 (2009). [CrossRef] [PubMed]
  12. E. Alerstam, W. C. Y. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, Biomed. Opt. Express 1, 658 (2010). [CrossRef]
  13. N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, Opt. Express 18, 6811 (2010). [CrossRef] [PubMed]
  14. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, Appl. Opt. 37, 7392 (1998). [CrossRef]
  15. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd ed. (Cambridge U. Press, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited