OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Retroemission by a glass bead monolayer for high-sensitivity, long-range imaging of upconverting phosphors

Bjørnar Sandnes, Tim A. Kelf, Hua Liu, and Andrei V. Zvyagin  »View Author Affiliations

Optics Letters, Vol. 36, Issue 15, pp. 3009-3011 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a retroemitter (REM) device comprising a planar glass bead set placed on a luminescent material substrate, which converges an excitation beam into a set of foci (voxels). The in-voxel emission is collimated by the beads, and propagates upstream over the long range, unlike the out-of-voxel emission spreading in all angles. The REM signal contrast is characterized as a function of incidence and observation angles and propagation distance. REM signal contrasts of approximately 20 and 1600 were found for the organic fluorescent dye and upconverting phosphor substrates, respectively. In the latter case, nonlinear optical signal enhancement plays a role in addition to the retroemission effect. This allows centimeter-scale REM patterns to be read out at the meter-scale distance using eye-safe sub- mW / cm 2 excitation intensities.

© 2011 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4330) Materials : Nonlinear optical materials
(180.1790) Microscopy : Confocal microscopy
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:

Original Manuscript: May 25, 2011
Manuscript Accepted: June 29, 2011
Published: August 1, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Bjørnar Sandnes, Tim A. Kelf, Hua Liu, and Andrei V. Zvyagin, "Retroemission by a glass bead monolayer for high-sensitivity, long-range imaging of upconverting phosphors," Opt. Lett. 36, 3009-3011 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Rajadhyaksha, S. Gonzalez, J. M. Zavislan, R. R. Anderson, and R. H. Webb, J. Invest. Dermatol. 113, 293(1999). [CrossRef] [PubMed]
  2. R. Juskaitis, T. Wilson, M. A. A. Neil, and M. Kozubek, Nature 383, 804 (1996). [CrossRef] [PubMed]
  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003). [CrossRef] [PubMed]
  4. H. Tanaka and S. Tanaka, “Apparatus for detecting modulated informations from emitted light turned by an object,” U.S. patent 5,091,636 (February 25, 1992).
  5. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011). [CrossRef] [PubMed]
  6. R. H. Page, K. I. Schaffers, P. A. Waide, J. B. Tassano, S. A. Payne, W. F. Krupke, and W. K. Bischel, J. Opt. Soc. Am. B 15, 996 (1998). [CrossRef]
  7. H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, J. Am. Chem. Soc. 128, 6426(2006). [CrossRef] [PubMed]
  8. S. W. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, Proc. Natl. Acad. Sci. USA 106, 10917 (2009). [CrossRef] [PubMed]
  9. J. C. Boyer and F. van Veggel, Nanoscale 2, 1417 (2010). [CrossRef] [PubMed]
  10. A. Masuno, H. Inoue, J. Yu, and Y. Arai, J. Appl. Phys. 108, 063520 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited