OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Multimode interference devices for focusing in microfluidic channels

Hamish C. Hunt and James S. Wilkinson  »View Author Affiliations


Optics Letters, Vol. 36, Issue 16, pp. 3067-3069 (2011)
http://dx.doi.org/10.1364/OL.36.003067


View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low-cost, compact, automated optical microsystems for chemical analysis, such as microflow cytometers for identification of individual biological cells, require monolithically integrated microlenses for focusing in microfluidic channels, to enable high-resolution scattering and fluorescence measurements. The multimode interference device (MMI), which makes use of self-imaging in multimode waveguides, is shown to be a simple and effective alternative to the microlens for microflow cytometry. The MMIs have been designed, realized, and integrated with microfluidic channels in a silica-based glass waveguide material system. Focal spot sizes of 2.4 μm for MMIs have been measured at foci as far as 43.7 μm into the microfluidic channel.

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(130.0130) Integrated optics : Integrated optics
(230.0230) Optical devices : Optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: May 10, 2011
Revised Manuscript: July 13, 2011
Manuscript Accepted: July 14, 2011
Published: August 8, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Hamish C. Hunt and James S. Wilkinson, "Multimode interference devices for focusing in microfluidic channels," Opt. Lett. 36, 3067-3069 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ol-36-16-3067


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ateya, J. S. Erickson, P. B. Howell, Jr., L. R. Hilliard, J. P. Golden, and F. S. Ligler, Anal. Bioanal. Chem. 391, 1485 (2008). [CrossRef] [PubMed]
  2. H. C. Hunt and J. S. Wilkinson, Microfluid. Nanofluid. 4, 53 (2008). [CrossRef]
  3. C. Dongre, J. van Weerd, G. A. J. Besselink, R. van Weeghel, R. M. Vazquez, R. Osellame, G. Cerullo, M. Cretich, M. Chiari, H. J. W. M. Hoekstra, and M. Pollnau, Electrophoresis 31, 2584 (2010). [CrossRef] [PubMed]
  4. S. Camou, H. Fujita, and T. Fujii, Lab Chip 3, 40 (2003). [CrossRef]
  5. J. Seo and L. P. Lee, Sens. Actuators B 99, 615 (2004). [CrossRef]
  6. J. Godin, V. Lien, and Y.-H. Lo, Appl. Phys. Lett. 89, 061106 (2006). [CrossRef]
  7. V. Moreno, J. Roman, and J. Salgueiro, Am. J. Phys. 65, 556 (1997). [CrossRef]
  8. H. C. Hunt and J. S. Wilkinson, in Proceedings of Photon10 (Institute of Physics, 2010), pp. 254–255.
  9. H. C. Hunt and J. S. Wilkinson, in Proceedings of the 15th Micro-optics Conference (MOC’09) (Optical Society of Japan, 2009), pp. 152–153.
  10. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995). [CrossRef]
  11. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited