OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 1 — Jan. 4, 2012

Resolution enhancement of random adsorbed single-molecule localization based on surface plasmon resonance illumination

Xiaomin Zhai, Yunfei Sun, and Dongmin Wu  »View Author Affiliations


Optics Letters, Vol. 36, Issue 21, pp. 4242-4244 (2011)
http://dx.doi.org/10.1364/OL.36.004242


View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-molecule localization (SML) is a powerful tool to overcome the diffraction limit in optical imaging, because the fluorescence emitted by single molecules can be observed with nanometer accuracy when the optical background and associated noise are made sufficiently small. Random adsorbed SML has been successfully demonstrated for superresolution imaging on metal surfaces. To optimize the random adsorbed SML, we developed a new illumination method based on surface plasmon resonance (SPR). The enhancement of the fluorescence signal and the reduction of background noise were achieved simultaneously. A high localization resolution of 15 nm was demonstrated with this new SPR illumination system.

© 2011 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(170.2945) Medical optics and biotechnology : Illumination design

ToC Category:
Image Processing

History
Original Manuscript: July 5, 2011
Revised Manuscript: August 20, 2011
Manuscript Accepted: September 29, 2011
Published: October 27, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Xiaomin Zhai, Yunfei Sun, and Dongmin Wu, "Resolution enhancement of random adsorbed single-molecule localization based on surface plasmon resonance illumination," Opt. Lett. 36, 4242-4244 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ol-36-21-4242


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006). [CrossRef] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642(2006). [CrossRef] [PubMed]
  3. C. Geisler, A. Schöle, C. von Middendorff, H. Bock, C. Eggeling, A. Egner, and S. W. Hell, Appl. Phys. A 88, 223 (2007). [CrossRef]
  4. D. M. Wu, Z. W. Liu, C. Sun, and X. Zhang, Nano Lett. 8, 1159 (2008). [CrossRef] [PubMed]
  5. H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, Nature 469, 385 (2011). [CrossRef] [PubMed]
  6. E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135 (1968).
  7. W. H. Reichert and G. A. Truskey, J. Cell Sci. 96, 219 (1990). [PubMed]
  8. D. Roy, Opt. Commun. 200, 119 (2001). [CrossRef]
  9. J. R. Lakowicz, Anal. Biochem. 337, 171 (2005). [CrossRef] [PubMed]
  10. R. E. Thompson, D. R. Larson, and W. W. Webb, Biophys. J. 82, 2775 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (496 KB)     
» Media 2: MOV (157 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited