OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Plasmonic optical trap having very large active volume realized with nano-ring structure

Zhiwen Kang, Haixi Zhang, Haifei Lu, Jianbin Xu, Hock-Chun Ong, Ping Shum, and Ho-Pui Ho  »View Author Affiliations

Optics Letters, Vol. 37, Issue 10, pp. 1748-1750 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (350 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The feasibility of using gold nano-rings as plasmonic nano-optical tweezers is investigated. We found that at a resonant wavelength of λ=785nm, the nano-ring produces a maximum trapping potential of 32kBT on gold nanoparticles. The existence of multiple potential wells results in a very large active volume of 106nm3 for trapping the target particles. The report nano-ring design provides an effective approach for manipulating nano-objects in very low concentration into the high-field region and is well suited for integration with microfluidics for lab-on-a-chip applications.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optics at Surfaces

Original Manuscript: December 16, 2011
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 1, 2012
Published: May 15, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Zhiwen Kang, Haixi Zhang, Haifei Lu, Jianbin Xu, Hock-Chun Ong, Ping Shum, and Ho-Pui Ho, "Plasmonic optical trap having very large active volume realized with nano-ring structure," Opt. Lett. 37, 1748-1750 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. Juan, M. Righini, and R. Quidant, Nat. Photon. 5, 349 (2011). [CrossRef]
  2. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photon. 2, 365 (2008). [CrossRef]
  3. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, Nano Lett. 10, 1006 (2010). [CrossRef]
  4. H. Xu and M. Käll, Phys. Rev. Lett. 89, 246802 (2002). [CrossRef]
  5. Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011). [CrossRef]
  6. B. Liu, L. Yang, and Y. Wang, Opt. Express 19, 3703 (2011). [CrossRef]
  7. R. Sainidou and F. J. García de Abajo, Phys. Rev. Lett. 101, 136802 (2008). [CrossRef]
  8. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, Nat. Phys. 5, 915 (2009). [CrossRef]
  9. H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, Appl. Phys. Lett. 99, 061107 (2011). [CrossRef]
  10. L. Huang, S. J. Maerkl, and O. J. F. Martin, Opt. Express 17, 6018 (2009). [CrossRef]
  11. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, Nano Lett. 11, 321 (2011). [CrossRef]
  12. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003). [CrossRef]
  13. M. G. Banaee and K. B. Crozier, Opt. Lett. 35, 760 (2010). [CrossRef]
  14. A. Lovera, and O. J. F. Martin, Appl. Phys. Lett. 99, 151104 (2011). [CrossRef]
  15. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
  16. P. B. Johnson, and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  17. B. Auquié, and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited