Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantification of the reduced scattering coefficient and phase-function-dependent parameter γ of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation

Not Accessible

Your library or personal account may give you access

Abstract

Multidiameter single fiber reflectance (MDSFR) spectroscopy is a method that allows the quantification of μs and the phase-function-dependent parameter γ of a turbid medium by utilizing multiple fibers with different diameters. We have previously introduced the theory behind MDSFR and its limitations, and here we present an experimental validation of this method based on phantoms containing a fractal distribution of polystyrene spheres both in the absence and presence of the absorber Evans Blue.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence

S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink
Biomed. Opt. Express 2(6) 1687-1702 (2011)

Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium

Stephen C. Kanick, Ute A. Gamm, Henricus J. C. M. Sterenborg, Dominic J. Robinson, and Arjen Amelink
Opt. Lett. 36(15) 2997-2999 (2011)

Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink
Biomed. Opt. Express 2(11) 3150-3166 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved