OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Effect of finite terms on the truncation error of Mie series

Antonio Alvaro Ranha Neves and Dario Pisignano  »View Author Affiliations

Optics Letters, Vol. 37, Issue 12, pp. 2418-2420 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The finite sum of the squares of the Mie coefficients is very useful for addressing problems of classical light scattering. An approximate formula available in the literature, and still in use today, has been developed to determine a priori the number of the most significant terms needed to evaluate the scattering cross section. Here, we obtain an improved formula, which includes the number of terms needed for determining the scattering cross section within a prescribed relative error. This is accomplished using extended precision computation for a wide range of commonly used size parameters and indices of refraction. The revised formula for the finite number of terms can be a promising and valuable approach for efficient modeling light scattering phenomena.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.5750) Optical devices : Resonators
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory

ToC Category:

Original Manuscript: February 28, 2012
Revised Manuscript: April 25, 2012
Manuscript Accepted: May 1, 2012
Published: June 15, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Antonio Alvaro Ranha Neves and Dario Pisignano, "Effect of finite terms on the truncation error of Mie series," Opt. Lett. 37, 2418-2420 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, Proc. Roy. Soc. Lon. A. 459, 3021 (2003).
  2. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyl, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A: Pure Appl. Opt. 9, S196 (2007). [CrossRef]
  3. H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, Phys. Rev. Lett. 99, 149901 (2007). [CrossRef]
  4. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  5. D. Jackèl and B. Walter, Comput. Graph. Forum 16, 201 (1997). [CrossRef]
  6. G. Mie, Ann. Phys. 330, 377 (1908). [CrossRef]
  7. W. J. Wiscombe, Appl. Opt. 19, 1505 (1980). [CrossRef]
  8. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  9. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  10. A. L. Aden, J. Appl. Phys. 22, 601 (1951). [CrossRef]
  11. V. E. Cachorro and L. L. Salcedo, J. Electromagn. Waves. Appl. 5, 913 (1991). [CrossRef]
  12. J. V. Dave, IBM J. Res. Dev. 13, 302 (1969). [CrossRef]
  13. H. C. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).
  14. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge University Press, 1992).
  15. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Dover, 1965).
  16. C. C. Lam, P. T. Leung, and K. Young, J. Opt. Soc. Am. B 9, 1585 (1992). [CrossRef]
  17. P. Chýlek, J. T. Kiehl, and M. K. W. Ko, Phys. Rev. A 18, 2229 (1978). [CrossRef]
  18. A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, Opt. Express 18, 822 (2010). [CrossRef]
  19. F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, Phys. Rev. Lett. 100, 163903 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited