OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Dynamically tunable optical bottles from an optical fiber

Yuhao Chen, Lu Yan, Lars Rishøj, Paul Steinvurzel, and Siddharth Ramachandran  »View Author Affiliations

Optics Letters, Vol. 37, Issue 16, pp. 3327-3329 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical fibers have long been used to impose spatial coherence to shape free-space optical beams. Recent work has shown that one can use higher order fiber modes to create more exotic beam profiles. We experimentally generate optical bottles from Talbot imaging in the coherent superposition of two fiber modes excited with long period gratings, and obtain a 28μm×6μm bottle with controlled contrast up to 10.13 dB. Our geometry allows for phase tuning of one mode with respect to the other, which enables us to dynamically move the bottle in free space.

© 2012 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(140.3300) Lasers and laser optics : Laser beam shaping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 10, 2012
Revised Manuscript: June 28, 2012
Manuscript Accepted: July 3, 2012
Published: August 6, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Yuhao Chen, Lu Yan, Lars Rishøj, Paul Steinvurzel, and Siddharth Ramachandran, "Dynamically tunable optical bottles from an optical fiber," Opt. Lett. 37, 3327-3329 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992). [CrossRef]
  2. K. Oh, S. Choi, Y. Jung, and J. W. Lee, J. Lightwave Technol. 23, 524 (2005). [CrossRef]
  3. M.-L. Hu, C.-Y. Wang, Y.-J. Song, Y.-F. Li, L. Chai, E. E. Serebryannikov, and A. M. Zheltikov, Opt. Express 14, 4128 (2006). [CrossRef]
  4. V. Pureur, J. C. Knight, and B. T. Kuhlmey, Opt. Express 18, 8906 (2010). [CrossRef]
  5. T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002). [CrossRef]
  6. A. Witkowska, S. G. Leon-Saval, A. Pham, and T. A. Birks, Opt. Lett. 33, 306 (2008). [CrossRef]
  7. S. Ramachandran, P. Kristensen, and M. F. Yan, Opt. Lett. 34, 2525 (2009). [CrossRef]
  8. N. Božinović, S. Golowich, P. Kristensen, and S. Ramachandran, Opt. Lett. 37, 2451 (2012). [CrossRef]
  9. X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, Appl. Phys. Lett. 94, 201102 (2009). [CrossRef]
  10. P. Steinvurzel, K. Tantiwanichapan, M. Goto, and S. Ramachandran, Opt. Lett. 36, 4671 (2011). [CrossRef]
  11. S. Chávez-Cerda, E. Tepichin, M. A. Meneses-Nava, G. Ramirez, and J. M. Hickmann, Opt. Express 3, 524 (1998). [CrossRef]
  12. B. P. S. Ahluwalia, W. C. Cheong, X.-C. Yuan, L.-S. Zhang, S.-H. Tao, J. Bu, and H. Wang, Opt. Lett. 31, 987 (2006). [CrossRef]
  13. L. Isenhower, W. Williams, A. Dally, and M. Saffman, Opt. Lett. 34, 1159 (2009). [CrossRef]
  14. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Opt. Express 17, 5743 (2009). [CrossRef]
  15. T. Čižmár, M. Šiler, and P. Zemánek, Appl Phys. B 84, 197 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: AVI (3267 KB)     
» Media 2: AVI (286 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited