OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Inverse scattering approach based on the field equivalence principle: inversion without a priori information on incident fields

Takashi Takenaka and Toshifumi Moriyama  »View Author Affiliations

Optics Letters, Vol. 37, Issue 16, pp. 3432-3434 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An inverse scattering approach based on the field equivalence principle is developed for reconstructing the parameters of the medium of a scattering object. A problem equivalent to the original scattering problem but internal to the measurement surface is set up. The equivalent surface currents determined by the measured total-field data rigorously yield the incident fields in the region under test, so the approach does not require explicit knowledge of the incident fields. Taking into account the fact that the equivalent surface currents produce a null field external to the surface, a functional of the medium’s parameters is introduced, and a genetic algorithm is applied to minimization of the functional. Numerical simulations for imaging defects in a known dielectric cylinder from only total-field data measured on an observation surface are performed to illustrate the efficacy of the proposed inversion method.

© 2012 Optical Society of America

OCIS Codes
(290.3200) Scattering : Inverse scattering
(100.3200) Image processing : Inverse scattering

ToC Category:

Original Manuscript: April 13, 2012
Revised Manuscript: June 20, 2012
Manuscript Accepted: July 10, 2012
Published: August 10, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Takashi Takenaka and Toshifumi Moriyama, "Inverse scattering approach based on the field equivalence principle: inversion without a priori information on incident fields," Opt. Lett. 37, 3432-3434 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. C. Chew and Y. M. Wang, IEEE Trans. Med. Imaging 9, 218 (1990). [CrossRef]
  2. T. Harada, D. J. N. Wall, T. Takenaka, and T. Tanaka, IEEE Trans. Antennas Propag. 43, 784 (1995). [CrossRef]
  3. A. Franchois and C. Pichot, IEEE Trans. Antennas Propag. 45, 203 (1997). [CrossRef]
  4. T. Isernia, V. Pascazio, and R. Pierri, IEEE Trans. Geosci. Remote Sens. 35, 910 (1997). [CrossRef]
  5. S. Caorsi, A. Massa, and M. Pastorino, IEEE Trans. Microwave Theory Tech. 48, 1815 (2000). [CrossRef]
  6. L. Crocco, M. D’Urso, and T. Isernia, Opt. Express 15, 3804 (2007). [CrossRef]
  7. M. D’Urso, K. Belkebir, L. Crocco, T. Isernia, and A. Litman, J. Opt. Soc. Am. A 25, 271 (2008). [CrossRef]
  8. P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, Inverse Probl. 25, 123003 (2009). [CrossRef]
  9. M. Pastorino, Microwave Imaging (Wiley, 2010).
  10. L. Pan, X. Chen, Y. Zhong, and S. P. Yeo, J. Opt. Soc. Am. A 27, 2208 (2010). [CrossRef]
  11. G. Oliveri, Y. Zhong, X. Chen, and A. Massa, J. Opt. Soc. Am. A 28, 2057 (2011). [CrossRef]
  12. M. Moghaddam and W. C. Chew, IEEE Trans. Antennas Propag. 41, 177 (1993). [CrossRef]
  13. S. He, P. Fuks, and G. W. Larson, IEEE Trans. Antennas Propag. 44, 1277 (1996). [CrossRef]
  14. I. T. Rekanos, J. Electromagn. Waves Appl. 17, 271 (2003). [CrossRef]
  15. T. Takenaka, H. Zhou, and T. Tanaka, J. Opt. Soc. Am. A 20, 1867 (2003). [CrossRef]
  16. C.-H. Huang, C.-C. Chiu, C.-L. Li, and K.-C. Chen, Prog. Electromagn. Res. 82, 381 (2008). [CrossRef]
  17. M. Gustafsson and S. He, Radio Sci. 35, 525 (2000). [CrossRef]
  18. R. F. Harrington, Time-Harmonic Electromagnetic Fields, 2nd ed. (Wiley, 2001).
  19. T. Moriyama, Z.-Q. Meng, and T. Takenaka, Microwave Opt. Technol. Lett. 53, 438 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited