OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Prospective for creating a near-field scalpel for laser surgery

Alexander V. Korovin and Alexandre Douplik  »View Author Affiliations


Optics Letters, Vol. 37, Issue 21, pp. 4510-4512 (2012)
http://dx.doi.org/10.1364/OL.37.004510


View Full Text Article

Enhanced HTML    Acrobat PDF (10038 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The efficient electric field enhancement due to coating a dielectric wedge by plasmon-carrying nanowires has been demonstrated numerically within the framework of the finite-difference frequency-domain method. The numerical simulations show increasing of electric field intensity in the near-field region of the dielectric wedge coated by silver nanowires in the regime of local plasmon excitation up to 100 times versus the uncoated case.

© 2012 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(290.5850) Scattering : Scattering, particles

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 19, 2012
Revised Manuscript: September 21, 2012
Manuscript Accepted: September 24, 2012
Published: October 29, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Alexander V. Korovin and Alexandre Douplik, "Prospective for creating a near-field scalpel for laser surgery," Opt. Lett. 37, 4510-4512 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ol-37-21-4510


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. M. H. Berlien, Applied Laser Medicine (Springer-Verlag, 2003).
  2. R. M. Verdaasdonky and C. F. P. van Swol, Phys. Med. Biol. 42, 869 (1997). [CrossRef]
  3. I. Melnik, Opt. Eng. 34, 1153 (1995). [CrossRef]
  4. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  5. A. M. Ivinskaya, A. V. Lavrinenko, and D. M. Shyroki, IEEE Trans. Antennas Propag. 59, 4155 (2011). [CrossRef]
  6. D. Shyroki and A. Lavrinenko, Phys. Stat. Sol. B 244, 3506 (2007). [CrossRef]
  7. M. Sosnova, N. Dmitruk, A. Korovin, S. Mamykin, V. Mynko, and O. Lytvyn, Appl. Phys. B 99, 493 (2010). [CrossRef]
  8. S. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media, 2007).
  9. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Mareno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited