OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Two-dimensional spatial-frequency-modulated imaging through parallel acquisition of line images

Daniel J. Higley, David G. Winters, and Randy A. Bartels  »View Author Affiliations

Optics Letters, Vol. 38, Issue 11, pp. 1763-1765 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This Letter demonstrates a two-dimensional imaging technique that uses a line scan camera to resolve one spatial dimension and temporal modulation to resolve the perpendicular dimension. A temporal intensity modulation, which increases linearly in frequency along one direction is applied to an illumination beam. The modulated light distribution is imaged onto an object then onto a line scan camera oriented perpendicularly to the direction of the modulation sweep. A line diffuser is placed shortly before the line scan camera and diffuses light along the direction of modulation so that each pixel collects all modulation frequencies.

© 2013 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(110.2970) Imaging systems : Image detection systems
(180.0180) Microscopy : Microscopy
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

Original Manuscript: March 7, 2013
Manuscript Accepted: April 23, 2013
Published: May 20, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Daniel J. Higley, David G. Winters, and Randy A. Bartels, "Two-dimensional spatial-frequency-modulated imaging through parallel acquisition of line images," Opt. Lett. 38, 1763-1765 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Art and M. B. Goodman, Methods Cell Biol. 38, 47 (1993). [CrossRef]
  2. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, Rev. Sci. Instrum. 80, 081101 (2009). [CrossRef]
  3. S. H. Yue, M. N. Slipchenko, and J.-X. Cheng, Laser Photon. Rev. 5, 496 (2011). [CrossRef]
  4. H. Sari-Sarraf and J. S. Goddard, IEEE Trans. Ind. Appl. 35, 1252 (1999). [CrossRef]
  5. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, Appl. Phys. Lett. 93, 121105 (2008). [CrossRef]
  6. G. Futia, P. Schlup, D. G. Winters, and R. A. Bartels, Opt. Express 19, 1626 (2011). [CrossRef]
  7. P. Schlup, G. Futia, and R. A. Bartels, Appl. Phys. Lett. 98, 211115 (2011). [CrossRef]
  8. E. E. Hoover, J. J. Field, D. G. Winters, M. D. Young, E. V. Chandler, J. C. Speirs, J. T. Lapenna, S. M. Kim, S.-Y. Ding, R. A. Bartels, J. W. Wang, and J. A. Squier, J. Biophotonics 5, 425 (2012). [CrossRef]
  9. S. S. Howard, A. Straub, N. G. Horton, D. Kobat, and C. Xu, Nat. Photonics 7, 33 (2012). [CrossRef]
  10. D. J. Higley, D. G. Winters, G. L. Futia, and R. A. Bartels, J. Opt. Soc. Am. A 29, 2579 (2012). [CrossRef]
  11. T. R. M. Sales, S. H. Chakmakjian, D. J. Schertler, and G. M. Morris, Proc. SPIE 5530, 133 (2004). [CrossRef]
  12. A. D. Ducharme, Opt. Express 15, 14573 (2007). [CrossRef]
  13. J. W. Goodman, J. Opt. Soc. Am. 66, 1145 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited