OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond

Levi P. Neukirch, Jan Gieseler, Romain Quidant, Lukas Novotny, and A. Nick Vamivakas  »View Author Affiliations

Optics Letters, Vol. 38, Issue 16, pp. 2976-2979 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present what we believe to be the first evidence of nitrogen vacancy (NV) photoluminescence (PL) from a nanodiamond suspended in a free-space optical dipole trap at atmospheric pressure. The PL rates are shown to decrease with increasing trap laser power, but are inconsistent with a thermal quenching process. For a continuous-wave trap, the neutral charge state (NV0) appears to be suppressed. Chopping the trap laser yields higher total count rates and results in a mixture of both NV0 and the negative charge state (NV).

© 2013 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(160.0160) Materials : Materials
(160.2220) Materials : Defect-center materials
(160.2540) Materials : Fluorescent and luminescent materials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:

Original Manuscript: May 8, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: July 12, 2013
Published: August 6, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Levi P. Neukirch, Jan Gieseler, Romain Quidant, Lukas Novotny, and A. Nick Vamivakas, "Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond," Opt. Lett. 38, 2976-2979 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wrachtrup and F. Jelezko, J. Phys. Condens. Matter 18, S807 (2006). [CrossRef]
  2. P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, D. J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, and J. Wrachtrup, Nat. Phys. 6, 249 (2010). [CrossRef]
  3. J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, Nature 455, 644 (2008). [CrossRef]
  4. F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, Nat. Phys. 7, 459 (2011). [CrossRef]
  5. H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, and D. Rugar, Science 339, 557 (2013). [CrossRef]
  6. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Phys. Rev. Lett. 85, 290 (2000). [CrossRef]
  7. P. L. Stanwix, L. M. Pham, J. R. Maze, D. Le Sage, T. K. Yeung, P. Cappellaro, P. R. Hemmer, A. Yacoby, M. D. Lukin, and R. L. Walsworth, Phys. Rev. B 82, 201201 (2010). [CrossRef]
  8. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. 93, 130501 (2004). [CrossRef]
  9. P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, Science 336, 1283 (2012). [CrossRef]
  10. V. R. Horowitz, B. J. Alemán, D. J. Christle, A. N. Cleland, and D. D. Awschalom, Proc. Natl. Acad. Sci. USA 109, 13493 (2012). [CrossRef]
  11. M. Geiselmann, M. L. Juan, J. Renger, J. M. Say, L. J. Brown, F. J. G. de Abajo, F. Koppens, and R. Quidant, Nat. Nanotechnol. 8, 175 (2013). [CrossRef]
  12. A. W. Schell, P. Engel, and O. Benson (2013), http://arxiv.org/abs/1303.0814 .
  13. R. Beams, D. Smith, T. W. Johnson, S. H. Oh, L. Novotny, and N. Vamivakas (2013), http://arxiv.org/abs/1303.1204 .
  14. T. Li, S. Kheifets, and M. G. Raizen, Nat. Phys. 7, 527 (2011). [CrossRef]
  15. J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, Phys. Rev. Lett. 109, 103603 (2012). [CrossRef]
  16. A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 28, 333 (1976). [CrossRef]
  17. Z. Yin, T. Li, X. Zhang, and L. M. Duan (2013), http://arxiv.org/abs/1305.1701 .
  18. F. Gittes and C. F. Schmidt, Opt. Lett. 23, 7 (1998). [CrossRef]
  19. I. Chavez, R. Huang, K. Henderson, E. L. Florin, and M. G. Raizen, Rev. Sci. Instrum. 79, 105104 (2008). [CrossRef]
  20. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, Science 328, 1673 (2010). [CrossRef]
  21. T. Plakhotnik and D. Gruber, Phys. Chem. Chem. Phys. 12, 9751 (2010). [CrossRef]
  22. D. M. Toyli, D. J. Christle, A. Alkauskas, B. B. Buckley, C. G. Van de Walle, and D. D. Awschalom, Phys. Rev. X 2, 031001 (2012). [CrossRef]
  23. M. Geiselmann, R. Marty, J. F. García de Abajo, and R. Quidant, “Room temperature optical transistor based on a single nv centre in diamond,” Nat. Phys. (to be published).
  24. T. L. Wee, Y. K. Tzeng, C. C. Han, H. C. Chang, W. Fann, J. H. Hsu, K. M. Chen, and Y. C. Yu, J. Phys. Chem. A 111, 9379 (2007). [CrossRef]
  25. N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, New J. Phys. 15, 013064 (2013). [CrossRef]
  26. I. P. Ivanov, X. Li, P. R. Dolan, and M. Gu, Opt. Lett. 38, 1358 (2013). [CrossRef]
  27. N. D. Lai, O. Faklaris, D. Zheng, V. Jacques, H. C. Chang, J. F. Roch, and F. Treussart (2013), http://arxiv.org/abs/1302.2154 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited