OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers

J. Martinez-Carranza, K. Falaggis, and T. Kozacki  »View Author Affiliations


Optics Letters, Vol. 39, Issue 2, pp. 182-185 (2014)
http://dx.doi.org/10.1364/OL.39.000182


View Full Text Article

Enhanced HTML    Acrobat PDF (399 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For several years, scientific, industrial, and biological fields have benefited from knowledge of phase information, which allows for the revealing of hidden features of various objects. An alternative to interferometry is single-beam phase retrieval techniques that are based on the transport of intensity equation, which describes the relation between the axial derivative of the intensity and the phase distribution for a given plane in the Fresnel region. The estimation of the axial intensity derivative is obtained from a series of intensity measurements, where the accuracy is subject to an optimum separation between the measurement planes depending on the number of planes, the level of noise, and the actual object phase distribution. In this Letter, a quantitative analysis of the error in estimated axial derivative is carried out and a model is reported that describes the interdependence between these parameters. The results of this work allow for estimation of the optimum separation between measurement planes with minimal error in the axial derivative.

© 2014 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 24, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 29, 2013
Published: January 3, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
J. Martinez-Carranza, K. Falaggis, and T. Kozacki, "Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers," Opt. Lett. 39, 182-185 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ol-39-2-182

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited