OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 4 — Apr. 1, 2014

Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch

Jingjiang Xu, Chi Zhang, Jianbing Xu, K. K. Y. Wong, and K. K. Tsia  »View Author Affiliations


Optics Letters, Vol. 39, Issue 3, pp. 622-625 (2014)
http://dx.doi.org/10.1364/OL.39.000622


View Full Text Article

Enhanced HTML    Acrobat PDF (529 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate all-optical ultrahigh-speed swept-source optical coherence tomography (OCT) based on amplified optical time-stretch (AOT). Such an inertia-free wavelength-swept mechanism, via group velocity dispersion, enables us to realize OCT with an A-scan rate well above MHz. More importantly, the key significance of AOT-OCT is its simultaneous broadband Raman amplification during the time-stretch process–greatly enhancing the detection sensitivity compared with prior attempts to apply optical time-stretch to OCT. Here, we report on an AOT-OCT system which is operated at an A-scan rate of 7.14 MHz, a superior roll-off performance (>2mm/dB), a record-high sensitivity of time-stretch-based OCT (>80dB) with a broadband gain bandwidth of 80 nm, which results in an axial resolution of 15μm. Our AOT-OCT system is thus able to, for the first time to the best of our knowledge, perform time-stretch-based OCT of biological tissue in vivo. It represents a major step forward in utilizing AOT as an alternative for achieving practical MHz OCT, without any long-term mechanical stability concerns as in typical swept-source OCT or bypassing the speed limitation of the image sensor employed in spectral-domain OCT.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 24, 2013
Revised Manuscript: December 17, 2013
Manuscript Accepted: December 23, 2013
Published: January 28, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Jingjiang Xu, Chi Zhang, Jianbing Xu, K. K. Y. Wong, and K. K. Tsia, "Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch," Opt. Lett. 39, 622-625 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ol-39-3-622


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Biological and Medical Physics, Biomedical Engineering) (Springer, 2008).
  2. H. C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, Biomed. Opt. Express 4, 1236 (2013). [CrossRef]
  3. L. An, P. Li, G. P. Lan, D. Malchow, and R. K. K. Wang, Biomed. Opt. Express 4, 245 (2013). [CrossRef]
  4. R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006). [CrossRef]
  5. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, Opt. Lett. 30, 3159 (2005). [CrossRef]
  6. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, Opt. Express 18, 14685 (2010). [CrossRef]
  7. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, Biomed. Opt. Express 4, 1890 (2013). [CrossRef]
  8. T. H. Tsai, B. Potsaid, Y. K. Tao, V. Jayaraman, J. Jiang, P. J. S. Heim, M. F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, A. E. Cable, and J. G. Fujimoto, Biomed. Opt. Express 4, 1119 (2013). [CrossRef]
  9. D. R. Solli, J. Chou, and B. Jalali, Nat. Photonics 2, 48 (2008). [CrossRef]
  10. K. Goda, K. K. Tsia, and B. Jalali, Nature 458, 1145 (2009). [CrossRef]
  11. J. Chou, O. Boyraz, D. Solli, and B. Jalali, Appl. Phys. Lett. 91, 161105 (2007). [CrossRef]
  12. Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azana, Opt. Express 15, 4597 (2007). [CrossRef]
  13. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, Phys. Rev. A 80, 043821 (2009). [CrossRef]
  14. K. Goda, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 031106 (2008). [CrossRef]
  15. K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, Opt. Express 20, 19612 (2012). [CrossRef]
  16. S. Moon and D. Y. Kim, Opt. Express 14, 11575 (2006). [CrossRef]
  17. C. Headley and G. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier Academic, 2005).
  18. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, Opt. Express 18, 10016 (2010). [CrossRef]
  19. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, Opt. Lett. 38, 673 (2013). [CrossRef]
  20. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006). [CrossRef]
  21. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, Opt. Lett. 36, 160 (2011). [CrossRef]
  22. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, Opt. Fiber Technol. 4, 215 (1998). [CrossRef]
  23. A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, IEEE Trans. Med. Imaging 28, 1468 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited