OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Bidimensional focusing of x rays by refraction in an edge

Werner Jark and Gianluca Grenci  »View Author Affiliations

Optics Letters, Vol. 39, Issue 5, pp. 1250-1253 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When an x-ray beam passes through the tip of a triangular prism, i.e., an edge, it undergoes two consecutive refraction processes. This will also happen when the incident beam is not perpendicular to the tip but when the beam progresses at a very small inclination to it. It will be shown that in such a condition, when both interfaces adjacent to the tip have concave surfaces, decoupled focusing in two orthogonal directions can be introduced in the transmitted x-ray beam. The limitations for this application are discussed, and focusing of x rays to spots with diffraction limited sizes of the order of 100 nanometers is found to be feasible. The feasibility of bidimensional focusing by use of such a device was experimentally verified.

© 2014 Optical Society of America

OCIS Codes
(120.5710) Instrumentation, measurement, and metrology : Refraction
(120.7000) Instrumentation, measurement, and metrology : Transmission
(180.7460) Microscopy : X-ray microscopy
(340.0340) X-ray optics : X-ray optics

ToC Category:
X-ray Optics

Original Manuscript: December 13, 2013
Manuscript Accepted: January 12, 2014
Published: February 25, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Werner Jark and Gianluca Grenci, "Bidimensional focusing of x rays by refraction in an edge," Opt. Lett. 39, 1250-1253 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Kirkpatrick and A. Baez, J. Opt. Soc. Am. 38, 766 (1948). [CrossRef]
  2. P. Kirkpatrick, J. Opt. Soc. Am. 39, 796 (1949). [CrossRef]
  3. B. Lengeler, C. G. Schroer, J. Tuemmler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, J. Synchrotron Rad. 6, 1153 (1999). [CrossRef]
  4. C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, Appl. Phys. Lett. 87, 124103 (2005). [CrossRef]
  5. H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, Opt. Express 19, 15069 (2011). [CrossRef]
  6. M. Montel, X-Ray Microscopy and Microradiography (Academic, 1957), pp. 177–185.
  7. M. Sanchez del Rio and L. Alianelli, J. Synchrotron Rad. 19, 366 (2012). [CrossRef]
  8. K. Evans-Lutterodt, J. M. Ablett, A. Stein, C.-C. Kao, D. M. Tennant, F. Klemens, A. Taylor, C. Jacobsen, P. L. Gammel, H. Huggins, S. Ustin, G. Bogart, and L. Ocola, Opt. Express 11, 919 (2003). [CrossRef]
  9. B. L. Henke, E. M. Gullickson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993), http://www-cxro.lbl.gov/optical_constants/ . [CrossRef]
  10. M. Simon, “Roentgenlinsen mit grosser Apertur (X-ray lenses with large aperture),” Ph.d. thesis (Karlsruher Institut für Technologie, 2010).
  11. L. Rigon, Z. Zhong, F. Arfelli, R.-H. Menk, and A. Pillon, Proc. SPIE 4682, 255 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited