Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhanced upconversion emission in colloidal (NaYF4:Er3+)/NaYF4 core/shell nanoparticles excited at 1523 nm

Not Accessible

Your library or personal account may give you access

Abstract

In this work, we report on efficient visible and near-IR upconversion emissions in colloidal hexagonal-phase core/shell NaYF4:Er3+/NaYF4 nanoparticles (38nm) under IR laser excitation at 1523 nm. Varying amounts of Er3+ dopants were introduced into the core NaYF4:Er3+ nanoparticles, revealing an optimized Er3+ concentration of 10% for the highest luminescent efficiency. An inert epitaxial shell layer of NaYF4 grown onto the core of the NaYF4:Er3+10% nanoparticle increased its upconversion emission intensity fivefold due to suppression of surface-related quenching mechanisms, yielding the absolute upconversion efficiency to be as high as 3.9±0.3% under an excitation density of 18W/cm2. The dependence of the intensity of upconversion emission peaks on laser excitation density in the core/shell nanoparticle displayed “saturation effects” at low excitation density in the range of 1.518W/cm2, which again demonstrates high upconversion efficiency.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles

Shaoshuai Zhou, Guicheng Jiang, Xinyue Li, Sha Jiang, Xiantao Wei, Yonghu Chen, Min Yin, and Changkui Duan
Opt. Lett. 39(23) 6687-6690 (2014)

Shell thickness dependence of upconversion luminescence of β-NaYF4:Yb, Er/β-NaYF4 core-shell nanocrystals

Lixin Liu, Feng Qin, Hua Zhao, Tianquan Lv, Zhiguo Zhang, and Wenwu Cao
Opt. Lett. 38(12) 2101-2103 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved