OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 1 — Jan. 19, 2007
« Show journal navigation

Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric

Antonio A. R. Neves, Adriana Fontes, Liliana de Y. Pozzo, Andre A. de Thomaz, Enver Chillce, Eugenio Rodriguez, Luiz C. Barbosa, and Carlos L. Cesar  »View Author Affiliations


Optics Express, Vol. 14, Issue 26, pp. 13101-13106 (2006)
http://dx.doi.org/10.1364/OE.14.013101


View Full Text Article

Acrobat PDF (472 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A double tweezers setup was employed to perform ultra sensitive force measurements and to obtain the full optical force curve as a function of radial position and wavelength. The light polarization was used to select either the transverse electric (TE), or transverse magnetic (TM), or both, modes excitation. Analytical solution for optical trapping force on a spherical dielectric particle for an arbitrary positioned focused beam is presented in a generalized Lorenz-Mie diffraction theory. The theoretical prediction of the theory agrees well with the experimental results. The algorithm presented here can be easily extended to other beam geometries and scattering particles.

© 2006 Optical Society of America

1. Introduction

2. Theory

To determine the optical forces rigorously on a dielectric sphere of an arbitrary size, the electromagnetic (EM) equations must be solved for the appropriate boundary conditions. Instead of using the standard 5th order corrected Davis-Barton beam approximation of the highly focused beam [14

14. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]

, 15

15. J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]

], we used the Angular Spectrum Representation [16

16. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

]. For the purpose of comparison with other results, we used the following convention for the partial wave decomposition:

Einc=E0n,m[1kGnmTM×jn(kr)Xnm(θ,ϕ)+GnmTEjn(kr)Xnm(θ,ϕ)]
Hinc=E0Zn,m[GnmTMjn(kr)Xnm(θ,ϕ)ikGnmTE×jn(kr)Xnm(θ,ϕ)]
(1)

[GnmTMGnmTE]=±2πikfexp(ikf)inmexp(imϕo)2n+14πn(n+1)(nm)!(n+m)!
0αmaxdαcosαexp(f2sin2αωa2)exp(ikzocosα)
{[m2Jm(kρosinα)kρosinαPnm(cosα)sin2αJm(kρosinα)Pnm(cosα)]cosϕo
+im[mJm(kρosinα)Pnm(cosα)sin2αJm(kρosinα)kρosinαPnm(cosα)]sinϕo}
(2)

These are exact BSCs for the incident optical beam EM fields with respect to an arbitrary origin, polarization and amplitude in terms of experimental parameters and not an approximation. Because we obtained an analytical expression for several integrals and only one numerical integration has to be performed, these BSCs are also numerically efficient, requiring under one minute CPU time (on a Pentium 4 and Mathematica v5.2) to evaluate all the Gn,mTM,TE coefficients for n up to 30 and -nmn for each beam position. The software is made available upon request to the author. These BSCs can than be used to calculate radial force by adjusting Gouesbet et al expression [2–4

2. G. Gouesbet, B. Maheu, and G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam using Bromwich formulation,” J Opt Soc Am A , 5, 1427–1443 (1988). [CrossRef]

] with our convention from [17

17. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

]:

[CxCy]=14k2[ReIm]n=1i(n+1){n(n+2)(2n+3)(2n+1)m=nn(n+m+2)(n+m+1)
[(an+1+an*2an+1an*)Gn+1,(m+1)TMGn,mTM*+(an+an+1*2anan+1*)GnmTMGn+1,m+1TM*+
(bn+1+bn*2bn+1bn*)Gn+1,(m+1)TEGn,mTE*+(bn+bn+1*2bnbn+1*)GnmTEGn+1,m+1TE*]
1nm=nn(n+m+2)(n+m+1)(nm)(n+m+1)
[(an+bn*2anbn*)GnmTMGn,m+1TE*(bn+an*2bnan*)GnmTEGn,m+1TM*]}
(3)

Where an and bn are the usual Lorenz-Mie coefficients that presents the observed Mie resonances.

3. Materials and methods

We performed the force spectroscopy experiment trapping a 3, 6 and 9 µm polystyrene microsphere diluted in water with a double optical tweezers setup. One beam from a Nd:YAG continuous-wave laser (cw), denoted as a trapping beam, is used to keep the particle trapped. A second beam from a tunable Ti:Sapphire cw laser, which is modulated (10 Hz) and highly attenuated, denoted as a perturbing beam, is used to perturb the particle from its equilibrium position. Both beams are Gaussian TEM00 laser beam brought to diffraction limited focal spot with a large NA microscope objective (1.25NA 100x oil). We used the same oil immersion objective lens for focusing the trapping beam, the perturbing beam, and collecting the backscattered light [10

10. A. Fontes, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, C. L. Cesar, and A. M. de Paula, “Double optical tweezers for ultrasensitive force spectroscopy in microsphere Mie scattering,” App. Phys. Lett. 87, 221109 (2005). [CrossRef]

]. This setup allowed: (1) to obtain a full optical force curve in the axial and radial directions as a function of beam position and wavelength for arbitrary polarization and (2) to observe the MDR resonances of the TE and TM modes of the microsphere by the selective coupling the beam to any one of the modes. Figure 1 shows a schematic diagram of the optical tweezers configuration used in this work.

Fig. 1. Complete scheme for the double optical tweezers for ultra-sensitive force spectroscopy.

The Gimbal mount changes the angle of incidence at the back aperture of the objective lens and moves the incident (perturbing) beam focus position laterally (for radial trapping force) using a step motor. The telescope changes the focus depth [18

18. E. Fallman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36, 2107–2113 (1997). [CrossRef] [PubMed]

]. A lens system guarantees that the steered beam is pivoted on the objective aperture to avoid power loss. The power transmitted through the objective, measured with an integration sphere as a function of the radial and axial position, was constant. The calibration of the radial beam position was performed by moving a calibrated mark on the Neubauer chamber with the microscope translating stage and using the steering mechanism of the Gimbal mount to position the laser beam at the mark, creating a direct correspondence between position in microns and the beam steering step counts. The radial optical force on the microsphere as a function of beam position was measured holding the microsphere by the trapping beam while the perturbing beam was moved in the radial direction by using the Gimbal mount.

A signal proportional to the displacement was measured using the backscattering of a He-Ne laser (after passing through two short pass filters to reject the Nd:YAG and Ti:Sapphire laser beams) and detected with a photomultiplier tube (PMT) coupled to the eyepiece of the microscope and a lock-in amplifier. The forces were observed by monitoring the amplitude of the displacements while changing the position of the Ti:Sapphire laser. Polarization was controlled by a λ/2 waveplate.

The MDR were observed by focusing the perturbing beam just outside the surface of the sphere (where the coupling was strongest) and changing the wavelength of the perturbing beam by rotating the birefringent plate inside the laser cavity with a rotating step motor. The wavelength was calibrated with a monochromator. The fact that the microsphere is suspended in the fluid by the optical tweezers is very important since any near surfaces could ruin the boundary conditions.

4. Results and discussion

The microsphere trapped by a highly focused beam will experience a force moving it to a stationary position on the optical axis, generally just behind the focal point. This distance was determined by changing the telescope until the axial force is zero. We used the expressions presented in Section 2 to simulate the optical forces in the radial direction for the zero axial force condition for different polarizations, wavelengths and microsphere sizes. The numerical convergence is determined by the maximum angular momentum chosen in the expansion, n max=kro [12

12. A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H. de B. Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006). [CrossRef] [PubMed]

].

Exact fitting with theory was not possible due to unknown exact values of the microsphere size, refractive indexes and the objective overfilling degree. Small changes in these values affect the diffraction rings around the beam in the focal region that contribute to the optical force. Diffraction effects can be seen as the oscillations at the end of Fig. 2 and Fig. 3 for both polarizations and reproduced adequately in the theory. The MDR, Fig. 4(a), were observed with different beam polarizations to excite the TM or TE mode individually, as it was demonstrated previously [10

10. A. Fontes, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, C. L. Cesar, and A. M. de Paula, “Double optical tweezers for ultrasensitive force spectroscopy in microsphere Mie scattering,” App. Phys. Lett. 87, 221109 (2005). [CrossRef]

]. This can be intuitively understood by noticing that only the radial component of the electric field will excite the TM mode, and only the radial component of the magnetic field will excite the TE modes. It can also be noticed that for the resonant wavelength the radial optical force extends further outside the microsphere (dotted line). The MDR resonances enhance optical forces by more than 30–50%, just outside to the sphere radius, where coupling to resonance mode is more efficient [10

10. A. Fontes, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, C. L. Cesar, and A. M. de Paula, “Double optical tweezers for ultrasensitive force spectroscopy in microsphere Mie scattering,” App. Phys. Lett. 87, 221109 (2005). [CrossRef]

]. Figure 4(b) shows the full radial force curve, normalized with respect to the resonant peak for each polarization, on a 9 µm sphere with respect to the beam movement for wavelength in resonance condition with the perpendicular polarization. From Fig. 4(b) one can observe that the radial force for the parallel polarization is different from the radial force for the perpendicular polarization, proving that the usually assumed azimuthal symmetry in the horizontal plane no longer holds. The anisotropy of the radial optical force is observed for all examined microspheres.

Fig. 2. Radial optical forces for parallel polarization with respect to radial beam movement for: 3, 6 and 9 µm spheres: (red) experimental; (blue) theory.
Fig. 3. Radial optical forces for perpendicular polarization with respect to radial beam movement for: 3, 6 and 9 µm spheres: (red) experimental; (blue) theory.
Fig. 4. Radial optical forces enhancement due to MDR for a 9 µm sphere and polarizations as a function of: (a) wavelength; (b) radial distance.

5. Conclusions

We acquired the curves for the optical force as a function of radial distance, wavelength and beam polarization for three microsphere sizes with a double tweezers setup where the radial position can be precisely controlled (±10 nm steps). This setup can be used to monitor fine shifts in morphology dependent resonances and to test optical force theories. The experiment shows the necessity to take into account Morphology Dependent Resonances (MDR), diffraction effects and polarization selection rules for a good description of optical forces.

We used a formalism based on rigorous solution of Maxwell equations for a proper description of the optical forces, without any limitations for the size of the scatterer that can be applied for all, Rayleigh, Mie and Geometrical Optics regimes. The optical forces are described in terms of experimental parameters such as the beam profile, objective filling factors, beam polarization and dielectric properties of the medium. The theoretical results agree with the experimental ones and demonstrate how careful one has to be when using optical force models for mechanical properties measurements. The framework of the formalism presented here can also be easily applied to other beams such as Laguerre beams, laser sheets, doughnut and top-hat beams.

Acknowledgments

This work was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) through the Optics and Photonics Research Center (CePOF).

References and links

1.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef] [PubMed]

2.

G. Gouesbet, B. Maheu, and G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam using Bromwich formulation,” J Opt Soc Am A , 5, 1427–1443 (1988). [CrossRef]

3.

G. Gouesbet and G. Grehan, “Sur la generalization de la théorie de Lorenz-Mie,” J. Opt. 13, 97–103 (1982). [CrossRef]

4.

K. F. Ren, G. Gouesbet, and G. Grehan, “Integral localized approximation in generalized Lorenz-Mie theory,” Appl. Opt. 37, 4218–4225 (1998). [CrossRef]

5.

P. A. M. Neto and H. M. Nussenzveig, “Theory of optical tweezers,” Europhys. Lett. 50, 702–708 (2000). [CrossRef]

6.

A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. A-Math. Phys. Eng. Sci. 459, 3021–3041 (2003). [CrossRef]

7.

J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532–2544 (2004). [CrossRef] [PubMed]

8.

J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force,” Appl. Opt. 43, 2545–2554 (2004). [CrossRef] [PubMed]

9.

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the Index of Refraction of Single Microparticles,” Phys. Rev. Lett. 97, 157402 (2006). [CrossRef] [PubMed]

10.

A. Fontes, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, C. L. Cesar, and A. M. de Paula, “Double optical tweezers for ultrasensitive force spectroscopy in microsphere Mie scattering,” App. Phys. Lett. 87, 221109 (2005). [CrossRef]

11.

A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, “Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system,” Phys. Rev. E. 72, 012903 (2005). [CrossRef]

12.

A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H. de B. Cruz, L. C. Barbosa, and C. L. Cesar, “Exact partial wave expansion of optical beams with respect to an arbitrary origin,” Opt. Lett. 31, 2477–2479 (2006). [CrossRef] [PubMed]

13.

A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, “Analytical results for a Bessel function times Legendre polynomials class integrals,” J. Phys. A 39, L293–L296 (2006). [CrossRef]

14.

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]

15.

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]

16.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

17.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

18.

E. Fallman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36, 2107–2113 (1997). [CrossRef] [PubMed]

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(180.0180) Microscopy : Microscopy
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory

ToC Category:
Trapping

History
Original Manuscript: October 10, 2006
Revised Manuscript: December 13, 2006
Manuscript Accepted: December 14, 2006
Published: December 22, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Antonio A. R. Neves, Adriana Fontes, Liliana de Y. Pozzo, Andre A. de Thomaz, Enver Chillce, Eugenio Rodriguez, Luiz C. Barbosa, and Carlos L. Cesar, "Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric," Opt. Express 14, 13101-13106 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-26-13101


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  2. G. Gouesbet, B. Maheu, G. Grehan, "Light scattering from a sphere arbitrarily located in a Gaussian beam using Bromwich formulation," J Opt Soc Am A,  5, 1427-1443 (1988). [CrossRef]
  3. G. Gouesbet and G. Grehan, "Sur la generalization de la théorie de Lorenz-Mie, " J. Opt. 13, 97-103 (1982). [CrossRef]
  4. K. F. Ren, G. Gouesbet, and G. Grehan, "Integral localized approximation in generalized Lorenz-Mie theory," Appl. Opt. 37, 4218-4225 (1998). [CrossRef]
  5. P. A. M. Neto, and H. M. Nussenzveig, "Theory of optical tweezers," Europhys. Lett. 50, 702-708 (2000). [CrossRef]
  6. A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, "Theory of trapping forces in optical tweezers," Proc. R. Soc. A-Math. Phys. Eng. Sci. 459, 3021-3041 (2003). [CrossRef]
  7. J. A. Lock, "Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration," Appl. Opt. 43, 2532-2544 (2004). [CrossRef] [PubMed]
  8. J. A. Lock, "Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force," Appl. Opt. 43, 2545-2554 (2004). [CrossRef] [PubMed]
  9. G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Measurement of the Index of Refraction of Single Microparticles," Phys. Rev. Lett. 97, 157402 (2006). [CrossRef] [PubMed]
  10. A. Fontes, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, C. L. Cesar, and A. M. de Paula, "Double optical tweezers for ultrasensitive force spectroscopy in microsphere Mie scattering," App. Phys. Lett. 87, 221109 (2005). [CrossRef]
  11. A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E. 72, 012903 (2005). [CrossRef]
  12. A. A. R. Neves, A. Fontes, L. A. Padilha, E. Rodriguez, C. H. de B. Cruz, L. C. Barbosa, and C. L. Cesar, "Exact partial wave expansion of optical beams with respect to an arbitrary origin," Opt. Lett. 31, 2477-2479 (2006). [CrossRef] [PubMed]
  13. A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodriguez, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, "Analytical results for a Bessel function times Legendre polynomials class integrals," J. Phys. A 39, L293-L296 (2006). [CrossRef]
  14. L. W. Davis, "Theory of electromagnetic beams," Phys. Rev. A 19, 1177-1179 (1979). [CrossRef]
  15. J. P. Barton and D. R. Alexander, "Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam," J. Appl. Phys. 66, 2800-2802 (1989). [CrossRef]
  16. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  17. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  18. E. Fallman and O. Axner, "Design for fully steerable dual-trap optical tweezers," Appl. Opt. 36, 2107-2113 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited