OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008
« Show journal navigation

High-Q cavities in multilayer photonic crystal slabs

Snjezana Tomljenovic-Hanic, C. Martijn de Sterke, M. J. Steel, Benjamin J. Eggleton, Yoshinori Tanaka, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 17248-17253 (2007)
http://dx.doi.org/10.1364/OE.15.017248


View Full Text Article

Acrobat PDF (219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel concept for creating high-Q cavities in photonic crystal slabs (PCS). These cavities are formed by depositing a polymer layer on top of a photonic crystal membrane fabricated in a high index semiconductor slab. We show that such multilayer structures exhibit a mode-gap and can yield high-Q microcavities with quality factors of Q~106. This allows the cavity to be created by polymer processing, following the much more demanding semiconductor processing that is used to generate a uniform PCS. Depending on the polymer used, these structures can be additionally tuned using photosensitivity or the electro-optic effect.

© 2007 Optical Society of America

1. Introduction

The incorporation of defects in an otherwise periodic structure allows photonic crystal slabs (PCS) to trap and guide light. Therefore the critical step in the fabrication is the incorporation of defects, waveguides and cavities, in a controllable way. However this is not an easy task, especially for high-Q cavities, as the current methods rely on extremely precise control of the holes’ size and position through nanolithographic techniques [1

1. T. Asano, B.S. Song, and S. Noda, “Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 (2006). [CrossRef] [PubMed]

3

3. S. Tomljenovic-Hanic, M.J. Steel, C.M. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006). [CrossRef] [PubMed]

]. At present, the geometry of such a structure is finalized at the stage of fabrication, and there is very limited scope for post-processing of silicon-and high-index semiconductor-based PCSs.

There are ways to tune existing defects or even induce defects by varying the refractive index within the PCS structure. Defects can be formed without geometry perturbation by air-hole infiltration or by selective exposure to light in photosensitive-based material. The infiltration of PCS air holes with materials of refractive index larger than n=1, such as a liquid crystal (LC) or a polymer was demonstrated recently [4

4. M. Loncar and A. Scherer, “Microfabricated optical cavities and photonic crystals,” in Optical microcavities, K. Vahala ed. (World Scientific Publishing, 2004).

8

8. C.L.C. Smith, D.K.C. Wu, M.W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B.J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-Hee Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007). [CrossRef]

]. Moreover Intonti et al introduced a “pixel by pixel” approach for writing and rewriting PCS defect structures via fluid infiltration [9

9. F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006). [CrossRef]

]. Another way to induce or tune a defect is to change the refractive index of the background material [10

10. M.W. Lee, C.L.C. Smith, C. Grillet, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y-hee Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007). [CrossRef] [PubMed]

,11

11. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006). [CrossRef]

]. This can be realized in PCS made of photosensitive material such as chalcogenide glasses and polymers. For example the induced refractive index change of azo-polymer film was can be as large as Δn=0.1 [12

12. J. Vydra, H Beisingoff, T. Tschudi, and M. Eich, “Photodecay mechanisms in side chain nonlinear optical polymethacrylates,” Appl. Phys. Lett. 69, 1035–1037 (1996). [CrossRef]

] and the refractive index of chalcogenide glass can change by as much as 1 to 8%, depending on the composition [13

13. A. Zakery and S.R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Sol. 330, 1–12 (2003). [CrossRef]

]. The advantage of these approaches is that they can be implemented any time after fabrication.

In this paper we are particularly interested in double-heterostructure high-Q cavities. Double-heterostructures are composed of regions of slightly different PCSs in a single slab to form a cavity (see Fig. 1(a)). These structures can be formed in many different ways but they all rely on an increase of the average refractive index within the central PC2, compared to PC1. This has the effect of shifting the band structure features to lower frequencies. Therefore the waveguide, introduced across the PCS, has a lower dispersion curve within PC2 than in the surrounding PC1. Both curves are within the same photonic band gap (PBG), but there is a gap between them. If the resonant frequency falls within this mode-gap the mode propagates in PC2 and is evanescent in PC1. The part of the waveguide within PC2 then acts as a cavity due to the mode-gap effect [14

14. B.S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004). [CrossRef]

]. The highest measured quality factors in PCSs were achieved using this type of cavity [15

15. B.S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005). [CrossRef]

17

17. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photonics 1, 449–458 (2007). [CrossRef]

]. In these designs, PC2, is formed either by longitudinal [15

15. B.S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005). [CrossRef]

] or lateral [16

16. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]

] hole displacement so that the hole density decreases, thus increasing the average refractive index. However these designs need to be finalized at the fabrication stage. There are other double-heterostructure designs which take advantage of the post-processingtechniques mentioned above. Quality factors of order Q~106 can be obtained when PC2 is generated by filling the holes with nano-porous silica in the central region of a silicon-based PCS [18

18. S. Tomljenovic-Hanic, C.M. de Sterke, and M.J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14, 12451–12456 (2006). [CrossRef] [PubMed]

]. When polymer materials or LC are used, Q=7×105 is achievable. Alternatively ultrahigh-Q cavities, Q~106, can be designed in chalcogenide-based PCS using the photosensitivity of this material [19

19. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32, 542–544 (2007). [CrossRef] [PubMed]

]. The results are comparable with the best results reported to date in silicon, despite the moderate refractive index of chalcogenide glass, n=2.7, when compared with silicon and other high-index semiconductors with n≈3.4.

In this paper we introduce a multilayer design that relies on depositing a strip of material on a silicon-based PCS, which can be achieved any time after fabrication. Though a variety of materials can in principle be used, polymers are particularly convenient because of the easy integration with other optical and electronic components. Well-developed adhesion schemes permit the use of polymers on a wide range of substrates [20

20. M.N.J. Diemeer , “Polymeric thermo-optic space switch for optical communications,” Opt. Mater. 9, 192–200 (1998). [CrossRef]

]. We also consider depositing a chalcogenide strip on the silicon slab. Polymers and chalcogenide glasses are photosensitive, which opens possibilities for additional post-processing. Glassy polymers are commonly used in thermo-optic devices because their fast thermal response time and their convenient thermo-optic characteristics such as high thermo-optic coefficient and low thermal conductivity [21

21. R.M. Ridder, A. Driessen, E. Rikkers, P.V. Lambeck, and M.N.J. Diemeer, “Design and fabrication of electro-optic polymer modulators and switches,” Opt. Mater. 12, 205–214 (1999). [CrossRef]

].

2. Model and method

We consider a PCS composed of a hexagonal array of cylindrical air holes in a silicon slab with the refractive index n=3.4. The structure has holes of radius R=0.29a, where a is the lattice constant and H=0.6a is the slab thickness. Across the PCS there is a W1 waveguide, in the Γ-K direction. We consider three multilayer configurations. In the first of these, PCS I, the layer is assumed to cover the silicon on one side, see Figs 1 and 2. In the second structure, PCS II, the layer covers the silicon on both sides. In the third, PCS III, the layer covers one side and also fills the associated holes. The refractive index of the polymer is n=1.45 unless stated otherwise. In this paper we do not take polymers broad-band absorption into account. The influence of absorption on the quality factor will be addressed in future studies.

Fig. 1. (a) Top view of a double heterostructure cavity; PC2 has slightly higher average refractive index than PC1. The black holes are air holes. (b) Silicon slab with polymer strip on the top (PCS I). In our structures typically a=410 nm.

In the PCS plane the strip is defined by the width, w, as w=ma or w =ma-2R, where m is an integer. In the z-direction the strip extends across the entire slab. Its thickness, h, is defined as a fraction of the slab height h=H/f where f=[2.5–8

8. C.L.C. Smith, D.K.C. Wu, M.W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B.J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-Hee Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007). [CrossRef]

]. This range corresponds to h=30nm-120 nm for a lattice constant a=410 nm and a thickness of H=246 nm. The centre of the strip is always positioned in the centre of the PCS where it is equally spaced to four of the holes.

The PBG calculations and dispersion curves of the photonic crystal waveguide are obtained using the 3D plane wave expansion (PWE) method. The quality factor is calculated using the 3D finite-difference time-domain (FDTD) method, combined with fast harmonic analysis [22

22. V.A. Mandelshtam and H.S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107, 6756–6769 (1997). [CrossRef]

]. The numerical parameters such as grid size, perfectly-matched layer (PML) width, height of the computational window strongly affect the convergence. In most calculations the PML width is 2a and the height of the computational window is 4a. The gridsize that provides satisfactory convergence depends on the quality factor. For Q~105, 28 points per period suffices, whereas 32 points per period are needed when Q~106. The resonant mode’s volume is: ∫∫∫UdV max(U) where U=ε|E|2/2 is the electric energy density.

3. Results

First we consider a bulk PCS that is infinite in the plane. We use the PWE method to obtain the PBGs and associated eigenstates of the waveguide. All structures have two guided modes below the light line in the lowest PBG-one in the middle of the bandgap and the other near the bottom. Depositing a polymer layer shifts the dispersion curves of both modes down. In Fig. 2 we show the mode-gap between the dispersion curves of the lower mode as it is a mode of interest. We plot dispersion curves of the W1 waveguide for the three PCSs of interest and compare these to the bandstructure of a silicon PCS without polymer (full circles) and those for the case we considered in [18

18. S. Tomljenovic-Hanic, C.M. de Sterke, and M.J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14, 12451–12456 (2006). [CrossRef] [PubMed]

] in which the holes are filled (filled triangles). In all calculations the layer covers the entire surface. The mode-gap extends between the dispersion curve of PC1 and any other dispersion curve of PC2. The mode-gap size depends on the polymer refractive index and the thickness of the layers. The results in Fig. 2 are obtained for a fixed layer thickness h=H/5, corresponding to h=50 nm for a lattice constant a=410 nm. This film is too thin to lead to its own band structure.

Fig. 2. Dispersion curves for W1 waveguide for the regular structure PC1 (full circles) and of PCS I (empty triangles), PCS II (full rectangles), with the holes infiltrated (full triangles), and PCS III (empty rectangles); the dashed line represents the light line.

Clearly, infiltrating the slab has more effect than depositing a strip on one or both sides of the slab. The mode-gap size Δω̃, where ω˜ =ωa/2πc, is measured at the Brillouin zone edge. It ranges from Δω̃=6.8×10-4 for PCS I to Δω̃=5.5×10-3 for PCS III. At the same time the lower PBG edge shift varies from Δω̃=6.7×10-4 for PCS I to Δω̃=3.8×10-3 for PCS III. The mode-gap size varies by an order of magnitude for different configurations. Obviously it has a much stronger effect when perturbation is located inside the slab than on its surface. The largest mode-gap does not necessarily mean the optimal configurations as the relative mode-gap position within the PBG is also important [18

18. S. Tomljenovic-Hanic, C.M. de Sterke, and M.J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14, 12451–12456 (2006). [CrossRef] [PubMed]

].

Now we consider finite multilayer PCSs and calculate the quality factors using the FDTD method. First we consider a quality factor dependence on the layer width for a single strip structure only, PCS I. The width is varied as w=ma, where m is integer. The strip thickness is fixed at h=H/5 as in the example above. The results for the quality factor are shown in Fig. 3(a). Initially widening the strip increases the quality factor. The overall maximum, Q=8×105 is obtained at w=8a. Further widening of the strip decreases the quality factor but it still remains at the order of few 105. Fig. 3(a) shows that the quality factor is larger for cavity widths that are even multiples of the period. The layer’s edge is then in the high index material within the PC row adjacent to the waveguide whereas for the odd m the edge cuts across the holes, as illustrated in the inset of Fig. 3(a). For example the quality factor halves when the width changes from w=6a to w=7a.

Fig. 3. (a) Total Q versus the width m for PCS I; inset shows the cavity edge adjacent to the W1 waveguide for odd m; and (b) modal volume versus m; inset shows the major electric field component, Ex, in the plane for m=8.

This variation in Q is prevented if the strip edge is in the high index material not crossing the holes within the PC row adjacent to the waveguide. For that reason from now on we choose the strip width as w =ma-2R so that the edge does not cut across these holes.

Fig. 4. Total Q (rectangles) and modal volume V (crosses) versus the cavity width m, for PCS III.

Fig. 5. (a) Total Q and resonant frequencies versus the layer thickness, h=H/f, for (a) PCS I, and (b) PCS II (w=8a).

We now examine how the quality factor depends on the strip thickness. Results for PCS I and PCS II are shown in Figs 5 with the insets illustrating the structures. The layer width is fixed at w=8a. In Fig. 5(a) the results are shown for PCS I. The thickness range is h=[H/6,H/2] which corresponds to h≈40-120 nm. The quality factor increases from Q=5×105 at h=H/6 to Q=9×105 at h=H/4. Further increasing the layer thickness decreases the Q though it still has values of a few times 105. Therefore PCS I is tolerant to changes in the layer thickness. The results for PCS II are shown in Fig. 5(b). The strips have the same width fixed at w=8a as for PCS I. The range of thickness is h=[H/8,H/2.5] corresponding to the h≈30-100 nm. This range differs from that for PCS I since the optimum occurs at a different value for h. The maximum of Q=5.9×106 appears at h=H/5 corresponding to h=50 nm. Note that for all values considered here the quality factor is over Q=2×106. We did not study the double-layer structure in as much detail since it would require more complex processing. The losses for all three configurations are due to the in-plane losses in the waveguide direction.

As a final point we discuss the quality factor’s dependence on the strip’s refractive index. Changing the refractive index shifts the optimum towards slightly different values. For instance for PCS I with n=1.4 and width w=8a the optimal thickness appears at h=H/3, rather than at h=H/4 for n=1.45. This shift maintains the same relative position of the mode-gap within the PBG. The thicker layer compensates for the smaller refractive index. We also considered depositing chalcogenide glass on the silicon slab. They have higher refractive indices, typically between n=2.4 and n=3 [13

13. A. Zakery and S.R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Sol. 330, 1–12 (2003). [CrossRef]

], than polymers [23

23. J.P. Harmon , “Polymers for optical fibers and waveguides: An Overview,” in Optical polymers fibers and waveguides, J.P. Harmon and G.K. Noren, eds. (American Chemical Society, 2001) pp. 1-23. [CrossRef]

]. Depositing a strip of the chalcogenide glass, with n=2.7, on the silicon slab results in quality factors below Q=3×104 for PCS I, and less than Q=3×105 for PCS II. These results are about one order of magnitude smaller than for the polymer-based multilayer structures.

4. Conclusions

We have introduced a novel concept for creating high-Q cavities in PCS without changing the geometry. Quality factors of order Q~106 can be obtained by depositing a polymer strip on the top surface of the silicon slab. A high-Q cavity is even achievable if the holes of the slab are filled with polymer. Therefore if a polymer strip cannot be deposited without filling the holes, a high-Q cavity can still be designed. For a symmetric structure with strips deposited on both sides the quality factor exceeds 106 without almost any optimization. These novel designs can be implemented at any time after fabrication, and depending on the kind of polymer used, can be additionally tuned using either photosensitivity or the electro-optic effect.

Acknowledgment

We acknowledge the assistance of the Australian Research Council Centres of Excellence Program. S. Tomljenovic-Hanic acknowledges the Australian Research Network for Advanced Materials for support for research at the DESE at Kyoto University.

References and links

1.

T. Asano, B.S. Song, and S. Noda, “Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 (2006). [CrossRef] [PubMed]

2.

A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-channel resonant-tunneling filter using mode-gap of width-tuned photonic-crystal waveguide,” Opt. Express 13, 4202–4209 (2005). [CrossRef] [PubMed]

3.

S. Tomljenovic-Hanic, M.J. Steel, C.M. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006). [CrossRef] [PubMed]

4.

M. Loncar and A. Scherer, “Microfabricated optical cavities and photonic crystals,” in Optical microcavities, K. Vahala ed. (World Scientific Publishing, 2004).

5.

M. Loncar and A. Scherer, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003). [CrossRef]

6.

R. van der Heijden, C.F. Carlström, J.A.P. Snijders, R.W. van der Heijden, F. Karouta, R. Nötzel, H.W.M. Salemink, B.K.C. Kjellander, C.W.M. Bastiaansen, D.J. Broer, and E. van der Drift, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88161112 (2006). [CrossRef]

7.

J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L.A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystal,” J. Appl. Phys. 99, 103105 (2006). [CrossRef]

8.

C.L.C. Smith, D.K.C. Wu, M.W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B.J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-Hee Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007). [CrossRef]

9.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117 (2006). [CrossRef]

10.

M.W. Lee, C.L.C. Smith, C. Grillet, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y-hee Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15, 1277–1285 (2007). [CrossRef] [PubMed]

11.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006). [CrossRef]

12.

J. Vydra, H Beisingoff, T. Tschudi, and M. Eich, “Photodecay mechanisms in side chain nonlinear optical polymethacrylates,” Appl. Phys. Lett. 69, 1035–1037 (1996). [CrossRef]

13.

A. Zakery and S.R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Sol. 330, 1–12 (2003). [CrossRef]

14.

B.S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004). [CrossRef]

15.

B.S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005). [CrossRef]

16.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]

17.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photonics 1, 449–458 (2007). [CrossRef]

18.

S. Tomljenovic-Hanic, C.M. de Sterke, and M.J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14, 12451–12456 (2006). [CrossRef] [PubMed]

19.

S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32, 542–544 (2007). [CrossRef] [PubMed]

20.

M.N.J. Diemeer , “Polymeric thermo-optic space switch for optical communications,” Opt. Mater. 9, 192–200 (1998). [CrossRef]

21.

R.M. Ridder, A. Driessen, E. Rikkers, P.V. Lambeck, and M.N.J. Diemeer, “Design and fabrication of electro-optic polymer modulators and switches,” Opt. Mater. 12, 205–214 (1999). [CrossRef]

22.

V.A. Mandelshtam and H.S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107, 6756–6769 (1997). [CrossRef]

23.

J.P. Harmon , “Polymers for optical fibers and waveguides: An Overview,” in Optical polymers fibers and waveguides, J.P. Harmon and G.K. Noren, eds. (American Chemical Society, 2001) pp. 1-23. [CrossRef]

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystal Cavities

History
Original Manuscript: September 28, 2007
Revised Manuscript: October 26, 2007
Manuscript Accepted: October 26, 2007
Published: December 10, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics
Physics and Applications of Microresonators (2007) Optics Express

Citation
Snjezana Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, Benjamin J. Eggleton, Yoshinori Tanaka, and Susumu Noda, "High-Q cavities in multilayer photonic crystal slabs," Opt. Express 15, 17248-17253 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-15-25-17248


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Asano, B.S. Song, and S. Noda, "Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006). [CrossRef] [PubMed]
  2. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode-gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4209 (2005). [CrossRef] [PubMed]
  3. S. Tomljenovic-Hanic, M.J. Steel, C.M. de Sterke and J. Salzman, "Diamond based photonic crystal microcavities," Opt. Express 14, 3556-3562 (2006). [CrossRef] [PubMed]
  4. M. Loncar, and A. Scherer, "Microfabricated optical cavities and photonic crystals," in Optical microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).
  5. M. Loncar and A. Scherer, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003). [CrossRef]
  6. R. van der Heijden, C.F. Carlström, J.A.P. Snijders, R.W. van der Heijden, F. Karouta, R. Nötzel, H.W.M. Salemink, B.K.C. Kjellander, C.W.M. Bastiaansen, D.J. Broer, and E. van der Drift, "InP-based two-dimensional photonic crystals filled with polymers," Appl. Phys. Lett. 88161112 (2006). [CrossRef]
  7. J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L.A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Liquid crystal infiltration of InP-based planar photonic crystal," J. Appl. Phys. 99, 103105 (2006). [CrossRef]
  8. C.L.C. Smith, D.K.C. Wu, M.W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B.J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007). [CrossRef]
  9. F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (2006). [CrossRef]
  10. M.W. Lee, C.L.C. Smith, C. Grillet, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan and Y.-H. Lee, "Photosensitive post tuning of chalcogenide photonic crystal waveguides," Opt. Express 15, 1277-1285 (2007). [CrossRef] [PubMed]
  11. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006). [CrossRef]
  12. J. Vydra, H Beisingoff, T. Tschudi and M. Eich, "Photodecay mechanisms in side chain nonlinear optical polymethacrylates," Appl. Phys. Lett. 69,1035-1037 (1996). [CrossRef]
  13. A. Zakery, and S.R. Elliot, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst.Sol. 330, 1-12 (2003). [CrossRef]
  14. B.S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004). [CrossRef]
  15. B.S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005). [CrossRef]
  16. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  17. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nature Photonics 1, 449-458 (2007). [CrossRef]
  18. S. Tomljenovic-Hanic, C.M. de Sterke, and M.J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006). [CrossRef] [PubMed]
  19. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007). [CrossRef] [PubMed]
  20. M.N.J. Diemeer, "Polymeric thermo-optic space switch for optical communications," Opt. Mater. 9,192-200 (1998). [CrossRef]
  21. R.M. Ridder, A. Driessen, E. Rikkers, P.V. Lambeck, and M.N.J. Diemeer, "Design and fabrication of electro-optic polymer modulators and switches," Opt. Mater. 12, 205-214 (1999). [CrossRef]
  22. V.A. Mandelshtam and H.S. Taylor, "Harmonic inversion of time signals," J. Chem. Phys. 107, 6756-6769 (1997). [CrossRef]
  23. J.P. Harmon, "Polymers for optical fibers and waveguides: An Overview," in Optical polymers fibers and waveguides, J.P. Harmon, and G.K. Noren, eds. (American Chemical Society, 2001) pp. 1-23. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited