OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008
« Show journal navigation

Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry

Lina Shi, Pierre Pottier, Yves-Alain Peter, and Maksim Skorobogatiy  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 17962-17971 (2008)
http://dx.doi.org/10.1364/OE.16.017962


View Full Text Article

Acrobat PDF (325 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using finite-difference time-domain method, we investigate photonic crystal slabs consisting of spherical voids or silica beads embedded into a dielectric slab as bio-chemical sensors. We study the dependence of the spectral position of guided-mode resonances on the refractive index of a slab material. The most sensitive design is based on voids filled with analyte. We also study the effects of the slab and analyte thicknesses on guided-mode resonance properties. We eventually demonstrate an aqueous analyte sensor with high sensitivity at visible wavelength as electro-magnetic energy distribution in some guided-mode resonances can be strongly localized in the analyte region.

© 2008 Optical Society of America

1. Introduction

The ability to detect small changes in the refractive index of a biological analyte is very important for the fundamental studies in biological and chemical sciences, as well as applications such as point-of-care diagnostics and defence. Various label-free biosensor technologies utilizing micro-mechanical systems, surface plasmon resonance excitation, 1-3 as well as guided-mode resonance effects4-31 have been recently developed with a main goal of reducing measurement complexity, increasing sensitivity and reducing cost. Furthermore, miniaturization of biological analysis systems makes the detection system portable, which is of particular interest for the bio-medical and defence sectors.

In this respect all-dielectric photonic crystal (PhC) bio-sensors operating on the principles of guided-mode resonance4-31 promise great potential by offering high degree of miniaturization and high sensitivity. In a typical implementation of such a sensor, PhC slab is designed as to exhibit resonant transmission (or reflection) when illuminated perpendicular to the plane of a slab.25-31 As was demonstrated in, 6, 11, 18 when a plane wave with a frequency of a guided-mode resonance is incoming onto a PhC slab, such a wave excites a long living radiative state localized within a PhC. Resonant frequency of such a state is typically highly sensitive to the geometrical and material parameters of a PhC slab, which is a principal reason for utilizing such resonances for sensing. Practically, sensing is performed via detection of the spectral shifts in the peak positions for small changes of a measurand.

In particular, for the PhC sensors featuring a square lattice of holes etched in a thin dielectric slab, theoretical studies of a spectrum of resonances as a function of the lattice constant and the slab thickness were reported in.13, 18 Later, Levi et al.29-31 have presented optical characterization of a PhC slab sensor using guided-mode resonances, and sensitivities of Δλn=130 nm/RIU around 816 nm were reported. This particular choice of a sensor geometry was motivated by the capabilities of an e-beam lithography technique that was used to fabricate the sensor prototype.

In this paper, we report several sensor designs based on PhC slabs consisting of either a monolayer of a triangular lattice of silica beads embedded into a dielectric slab placed on top of a substrate (see Fig. 1(a)), or, alternatively, spherical voids embedded into a dielectric suspended on one side in air (see Fig. 1(b)). We then characterize the sensitivity of the guided-mode resonances in such systems to the changes in the refractive index of analyte covering the PhC slab. Our work is motivated by recent progress in the field of PhC fabrication by self assembly of sub-micron spheres followed by backfilling of the inter-sphere voids, and optional subsequent etching of the spheres. To our knowledge, effects of structure parameters on guided-mode resonances in such structures have not yet been reported. Moreover, we find that sensitivities in the spherical voids structures can be several times as high as in the case of classical PhC slabs featuring a square array of cylindrical holes.

The work is organized as follows. In Section 2 we begin with a description of the simulation model and method. Study of the reflection spectra of various PhC slabs is presented in Section 3. Section 4 is devoted to the parameter optimization. The optimal slab thickness and effect of the analyte thickness on sensor sensitivity are discussed.

2. Simulation model and method

Our simulations are performed by the Meep implementation of the finite-difference time-domain (FDTD) method.32 Figure 1 shows the computation domains that were constructed to calculate the normal incidence reflection spectra. The cyan, red, black and blue, respectively, denote the liquid, silica beads, substrate and dielectric slab material. All the feature sizes are defined in terms of a lattice constant a. The bead radius in a hexagonally close packed lattice is r=0.5a. The liquid above beads can be finite or infinite. The refractive index of liquid is taken to be in the vicinity of 1.3. The refractive index of silica used in this article is assumed to be 1.45. For the substrate, a general value of 3.2 is taken (case of semiconductor) and the absorption is neglected for simplicity. Unless stated otherwise, the cap above the monolayer of beads has a size t=0.4a, and is of the same material as the one used for filling the inter-bead spacing.

Fig. 1. Schematics of photonic crystal slab sensors based on guided-mode resonances. The area surrounded by yellow dash line denotes a single crystal unit cell. (a) Monolayer silica beads (red) inside a dielectric slab (blue) on substrate (black). The cyan denotes liquid analyte. (b) Monolayer analyte-filled spherical voids (cyan) inside a dielectric slab (blue). (c) Cross section of structures in (a) and (b) in the xy plane.

The computation domain includes a single crystal unit cell as shown in Fig. 1(c). On the surfaces which are perpendicular to the z direction, we impose the Perfectly Matched Layer (PML) absorbing boundary conditions. For the remaining four surfaces, we impose a Bloch periodic boundary condition. The incident source is a Gaussian pulse source placed at a plane perpendicular to the z direction and the light propagates along the z direction. The electric field of the source is polarized along the y direction, although similar results (not reported) are obtained for the other polarization. In simulation we use the normalized frequency which is always specified in units of 2π c/a, that is, a/λ. c is the light velocity in the free space and λ is the wavelength. In order to get normal-incidence reflection coefficient (the reflected flux divided by the incident flux), we perform two simulations, one with and another without the PhC slab (for the details of the method see the Meep manual32).

3. Simulation and analysis

3.1. PhC slabs containing silica beads

First we consider reflection spectra of PhCs featuring silica beads (Fig. 1(a)) embedded into a dielectric slab. In our simulations we vary the refractive index of a slab material from 1.1 to 3.3 (blue area in Fig. 1). Using the computational setup as described above, we calculate the reflection spectra of the structure displayed in Fig. 1(a). The results are shown in Fig. 2. The solid blue and dashed green curves are, respectively, for the two values 1.30 and 1.33 of the analyte refractive index. Difference between these two curves is an indicator to the sensitivity of the reflection spectra to the changes in the analyte refractive index. Figure 2 shows that there are no guided-mode resonances for PhCs with the slab material of small refractive index (eg: n=1.1,1.3,1.5), due to a small refractive index contrast between the beads and the slab. For a strong refractive index contrast, however, the guided-mode resonances start appearing in the reflection spectrum. One also observes a sizable spectral shift of the resonance peaks for the two different values of the analyte refractive index. For example, from Fig. 2 it follows that if the diameter of beads is 500 nm, then for the slab refractive index 2.1 the shift of the first resonance peak is 1.9 nm for the 0.03 RIU change in the analyte refractive index (solid blue and dashed green curves) which yields the sensitivity of Δλn=63 nm/RIU at the operation wavelength of ~820 nm. It is typically a safe assumption that a 0.1 nmchange in the position of a resonance peak can be detected reliably, which leads to a sensor resolution of 1.5×10-3 RIU. Such value is, however, quite standard for many medium-resolution refractive index sensors.

Fig. 2. Reflection spectra from the PhCs featuring silica beads inside a dielectric slab for the various values of slab material refractive index (from 1.1 to 3.3). Solid blue and dashed green curves are respectively for the 1.30 and 1.33 values of the analyte refractive index.

3.2. PhC slabs containing spherical voids

Fig. 3. Reflection spectra from the PhCs featuring analyte-filled spherical voids in a dielectric slab for the various values of the slab material refractive index (from 1.0 to 2.8). Solid blue and dashed green curves are respectively for the 1.30 and 1.33 values of the analyte refractive index.

4. Parameter optimization

In what follows we only consider PhC slabs with embedded triangular lattice of voids. We now study the effects of the slab thickness and analyte thickness on guided-mode resonance properties. Moreover, as one typically finds several guided-mode resonances in the reflection spectra of a PhC slab we investigate why different resonances can have very different sensitivities to the changes in the analyte refractive index. In the following simulations we fix the refractive index of the slab material at 2.05. Experimentally, such refractive index can be realized using silicon nitride deposition process.

4.1. Slab thickness

We start by investigating the effect of a slab thickness on guided-mode resonances. In all our simulations we assume that analyte is infinitely extended on one side of a PhC slab as demonstrated in Fig. 1(b). As before, we perform two simulations for the two values 1.30 and 1.33 of the analyte refractive index. Figure 4 shows the reflection spectra of five PhC slabs, each with a different cap thickness t (see also Fig. 5 for a field distribution at peak 1 and peak 4 resonances). The reflection spectra exhibit a number of important features. Thus, position of all the resonances decrease in normalized frequency as the analyte refractive index increases from 1.30 to 1.33. There is one resonance, labelled as peak 4, with normalized frequency close to 0.84 (see solid blue curve in Figs. 4(c,d,e)) that displays little variation in width and spectral position as the cap thickness increases from 0.2a to 0.4a, thus been resistant to fabrication imperfections. This resonance is also narrower than others and for t=0.2a it is far separated from the other closest peak. Finally, this resonance shifts more than others as the liquid index increases from 1.30 to 1.33, thus being the most sensitive to the changes in the analyte refractive index. All these properties make operation in the vicinity of such a peak very suitable for sensing applications.

Fig. 4. Reflection spectra of five photonic crystal slabs with various cap thicknesses t. Solid blue and dashed green curves are respectively for the 1.30 and 1.33 values of the analyte refractive index.

For the t=0.2a design, normalized frequencies a/λ of standing resonances for such a peak are 0.8428 and 0.8292 for the 1.30 and 1.33 values of the analyte refractive index (solid blue and dashed green curves). If the lattice constant a is 500 nm, sensitivity associated with this peak is Δλn=327 nm/RIU which is even better than 246 nm/RIU demonstrated in the last section for the unoptimized structure.

Fig. 5. Distribution of the y component of the electric field for peak 1 and peak 4 across PhC crossection with t=0.2a. The black line denotes the contours of the solid material. In both cases analyte fills the spherical void, as well as the region above it.

4.2. Effect of the finite analyte thickness

So far, we have studied sensing assuming infinitely thick analyte covering a PhC. In this last subsection we investigate the case of an analyte of finite thickness. This scenario is of interest, for example, when trying to minimize the volume of the analyte used, thus operating with thin analyte films. Another interesting question is how thick should the analyte film be to result in effectively a bulk-like response of sensor.

Fig. 6. Reflection spectra of six PhC slabs with different analyte thicknesses tl : 0.1a, 0.2a, 0.4a, 0.8a, 1.2a, ∞.

Fig. 7. Peak position versus normalized thickness tl/a of an analyte. The dashed line denotes the peak position for an infinite analyte.

5. Conclusion

Using the finite-difference time-domain method, we investigated two resonant PhC slab sensor designs for sensing changes in the analyte refractive index. Suggested guided-mode resonance sensors comprise a monolayer of hexagonally closed-packed silica beads or spherical voids placed inside of a dielectric slab. We show that the most sensitive design is based on voids filled with analyte. In such sensors some guided-mode resonances have a substantial fraction of their electro-magnetic energy localized in the analyte, thus enabling designs with spectral sensitivity as high as 327 nm/RIU at 600 nm operation wavelength.

Fig. 8. Distribution of the y component of the electric field for peak 4 across PhC crossection with t=0.2a and various thicknesses of the analyte layer tl : (a) 0.1a, (b) 0.4a, (c) 1.2a, (d) ∞. The black lines denote the contours of the solid material and analyte. In both cases analyte fills the spherical void.

Acknowledgment

This work was supported by the Natural Sciences and Engineering Research Council of Canada, Strategic Grant 336830 2006.

References and links

1.

W. Lukosz, “Principle and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215–225 (1991). [CrossRef]

2.

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006). [CrossRef]

3.

B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15, 11413–11426 (2007). [CrossRef] [PubMed]

4.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]

5.

S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996). [CrossRef]

6.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997). [CrossRef]

7.

M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999). [CrossRef]

8.

V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De la Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol. 17, 2050–2057 (1999). [CrossRef]

9.

V. Pacradouni, W. J. Mandeville, A. R. Cowan, P. Paddon, and J. F. Young, “Photonic band structure of dielectric membranes periodically textured in two dimensions,” Phys. Rev. B , 62, 4204–4206 (2000). [CrossRef]

10.

A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young, “Resonant scattering and mode coupling in two dimensional textured planar waveguides,” J. Opt. Soc. Am. A 18, 1160–1170 (2001). [CrossRef]

11.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002). [CrossRef]

12.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, “Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method,” J. Mater. Chem. 12, 3268–3274 (2002). [CrossRef]

13.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl.Phys.Lett. 82, 1999–2001 (2003). [CrossRef]

14.

O. Kilic, S. Kim, W. Suh, Y. Peter, A. S. Sudb03, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782–2784 (2004). [CrossRef]

15.

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12, 1575–1582 (2004). [CrossRef] [PubMed]

16.

L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys. A 81, 911–913 (2005). [CrossRef]

17.

A. Rosenberg, M.W. Carter, J. A. Casey, M. Kim, R. T. Holm, R. L. Henry, C. R. Eddy, V. A. Shamamian, and K. Bussmann, “Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum,” Opt. Express 13, 6564–6571 (2005). [CrossRef] [PubMed]

18.

K. B. Crozier, V. Lousse, O. Kilic, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73, 115126 (2006). [CrossRef]

19.

Z. Jian and D. M. Mittlemana, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 123113–123118 (2006). [CrossRef]

20.

T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15, 16954–16965 (2007). [CrossRef] [PubMed]

21.

J. L. Skinner, A. A. Talin, and D. A. Horsley, “A MEMS light modulator based on diffractive nanohole gratings,” Opt. Express 16, 3701–3711 (2008). [CrossRef] [PubMed]

22.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D: Appl. Phys. 41, 135105–135111 (2008). [CrossRef]

23.

Y. Nazirizadeh, J. G. Mller, U. Geyer, D. Schelle, E. Kley, A. Tünnermann, U. Lemmer, and M. Gerken, “Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters,” Opt. Express 16, 7153–7160 (2008). [CrossRef] [PubMed]

24.

G. Alagappan, X. W. Sun, and M. B. Yu, “Out-of-plane diffraction of a two-dimenisonal photonic crystal with finite dielectric modulation,” J. Opt. Soc. Am. A 25, 1098–1103 (2008). [CrossRef]

25.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002). [CrossRef]

26.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B 85, 219–226 (2002). [CrossRef]

27.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B 120, 187–193 (2006). [CrossRef]

28.

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett.89, 023901 (2006). [CrossRef]

29.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris. “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).

30.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Optical Characterization and Sensitivity Evaluation of Guided-Resonances in Photonic Crystal Slabs for Biosensing Applications,” Proc. of the Conference on Lasers and Electro-Optics (CLEO), May 2007.

31.

O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46, 1881–1889 (2007). [CrossRef] [PubMed]

32.

S. G. Johnson, “Meep”, http://ab-initio.mit.edu/wiki/index.php/Meep

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.3990) Optical devices : Micro-optical devices
(260.5740) Physical optics : Resonance
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 5, 2008
Revised Manuscript: October 17, 2008
Manuscript Accepted: October 17, 2008
Published: October 21, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Lina Shi, Pierre Pottier, Yves-Alain Peter, and Maksim Skorobogatiy, "Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry," Opt. Express 16, 17962-17971 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-16-22-17962


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Lukosz, "Principle and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing," Biosens. Bioelectron. 6, 215-225 (1991). [CrossRef]
  2. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006). [CrossRef]
  3. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. A. Skorobogatiy, "Photonic bandgap fiber-based Surface Plasmon Resonance sensors," Opt. Express 15, 11413-11426 (2007). [CrossRef] [PubMed]
  4. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992). [CrossRef]
  5. S. Peng and G. M. Morris, "Resonant scattering from two-dimensional gratings," J. Opt. Soc. Am. A 13, 993-1005 (1996). [CrossRef]
  6. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997). [CrossRef]
  7. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, "Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals," J. Lightwave Technol. 17, 2096-2112 (1999). [CrossRef]
  8. V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De la Rue, "Resonant coupling of near-infrared radiation to photonic band structure waveguides," J. Lightwave Technol. 17, 2050-2057 (1999). [CrossRef]
  9. V. Pacradouni, W. J. Mandeville, A. R. Cowan, P. Paddon, and J. F. Young, "Photonic band structure of dielectric membranes periodically textured in two dimensions," Phys. Rev. B,  62, 4204-4206 (2000). [CrossRef]
  10. A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young, "Resonant scattering and mode coupling in two dimensional textured planar waveguides," J. Opt. Soc. Am. A 18, 1160-1170 (2001). [CrossRef]
  11. S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002). [CrossRef]
  12. M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002). [CrossRef]
  13. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003). [CrossRef]
  14. O. Kilic, S. Kim, W. Suh, Y. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders," Opt. Lett. 29, 2782-2784 (2004). [CrossRef]
  15. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, "Angular and polarization properties of a photonic crystal slab mirror," Opt. Express 12, 1575-1582 (2004). [CrossRef] [PubMed]
  16. L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, "Photonic properties of silicon-coated colloidal monolayers," Appl. Phys. A 81, 911-913 (2005). [CrossRef]
  17. A. Rosenberg, M. W. Carter, J. A. Casey, M. Kim, R. T. Holm, R. L. Henry, C. R. Eddy, V. A. Shamamian, and K. Bussmann, "Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum," Opt. Express 13, 6564-6571 (2005). [CrossRef] [PubMed]
  18. K. B. Crozier, V. Lousse, O. Kilic, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115126 (2006). [CrossRef]
  19. Z. Jian and D. M. Mittlemana, "Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy," J. Appl. Phys. 100, 123113-123118 (2006). [CrossRef]
  20. T. Prasad, V. L. Colvin, and D. M. Mittleman, "The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy," Opt. Express 15, 16954-16965 (2007). [CrossRef] [PubMed]
  21. J. L. Skinner, A. A. Talin, and D. A. Horsley, "A MEMS light modulator based on diffractive nanohole gratings," Opt. Express 16, 3701-3711 (2008). [CrossRef] [PubMed]
  22. L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller, "Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008). [CrossRef]
  23. Y. Nazirizadeh, J. G. Mller, U. Geyer, D. Schelle, E. Kley, A. Tünnermann, U. Lemmer, and M. Gerken, "Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters," Opt. Express 16, 7153-7160 (2008). [CrossRef] [PubMed]
  24. G. Alagappan, X. W. Sun, and M. B. Yu, "Out-of-plane diffraction of a two-dimenisonal photonic crystal with finite dielectric modulation," J. Opt. Soc. Am. A 25, 1098-1103 (2008). [CrossRef]
  25. B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002). [CrossRef]
  26. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002). [CrossRef]
  27. I. D. Block, L. L. Chan, and B. T. Cunningham, "Photonic crystal optical biosensor incorporating structured low-index porous dielectric," Sens. Actuators B 120, 187-193 (2006). [CrossRef]
  28. N. Ganesh, I. D. Block, and B. T. Cunningham, "Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio," Appl. Phys. Lett. 89, 023901 (2006). [CrossRef]
  29. O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris. "Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing," Proc. SPIE 6447, 2-9 (2007).
  30. O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, "Optical Characterization and Sensitivity Evaluation of Guided-Resonances in Photonic Crystal Slabs for Biosensing Applications," Proc. of the Conference on Lasers and Electro-Optics (CLEO), May 2007.
  31. O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, "Integrated semiconductor optical sensors for cellular and neural imaging," Appl. Opt. 46, 1881-1889 (2007). [CrossRef] [PubMed]
  32. S. G. Johnson, "Meep", http://ab-initio.mit.edu/wiki/index.php/Meep

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited