## Performance of reduced bit-depth acquisition for optical frequency domain imaging

Optics Express, Vol. 17, Issue 19, pp. 16957-16968 (2009)

http://dx.doi.org/10.1364/OE.17.016957

Acrobat PDF (512 KB)

### Abstract

High-speed optical frequency domain imaging (OFDI) has enabled practical wide-field microscopic imaging in the biological laboratory and clinical medicine. The imaging speed of OFDI, and therefore the field of view, of current systems is limited by the rate at which data can be digitized and archived rather than the system sensitivity or laser performance. One solution to this bottleneck is to natively digitize OFDI signals at reduced bit depths, e.g., at 8-bit depth rather than the conventional 12-14 bit depth, thereby reducing overall bandwidth. However, the implications of reduced bit-depth acquisition on image quality have not been studied. In this paper, we use simulations and empirical studies to evaluate the effects of reduced depth acquisition on OFDI image quality. We show that image acquisition at 8-bit depth allows high system sensitivity with only a minimal drop in the signal-to-noise ratio compared to higher bit-depth systems. Images of a human coronary artery acquired *in vivo* at 8-bit depth are presented and compared with images at higher bit-depth acquisition.

© 2009 OSA

## 1. Introduction

1. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express **11**(22), 2953–2963 (2003). [PubMed]

2. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express **11**(18), 2183–2189 (2003). [PubMed]

4. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express **16**(2), 1096–1103 (2008). [PubMed]

6. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express **13**(14), 5483–5493 (2005). [PubMed]

*in vivo*[7

7. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. **12**(12), 1429–1433 (2006). [PubMed]

2. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express **11**(18), 2183–2189 (2003). [PubMed]

10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. **28**(21), 2067–2069 (2003). [PubMed]

11. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express **11**(8), 889–894 (2003). [PubMed]

12. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. **28**(20), 1981–1983 (2003). [PubMed]

15. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express **14**(8), 3225–3237 (2006). [PubMed]

*f*

_{A}*

*N*where

*f*

_{A}is the A-line rate and

*N*is the number of points per A-line.

*N*is given by 2*

*Δλ/δλ*and

*Δλ and δλ*are the wavelength sweep range and instantaneous line-width of the laser, respectively. In addition, polarization diversity or polarization-sensitivity is highly desirable for robust clinical systems and doubles the required digital throughput.

2. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express **11**(18), 2183–2189 (2003). [PubMed]

11. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express **11**(8), 889–894 (2003). [PubMed]

12. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. **28**(20), 1981–1983 (2003). [PubMed]

17. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Express **12**(25), 6184–6191 (2004). [PubMed]

*Huber et. al.*also used an 8-bit osilliscope at 5GS/s in order to compare 8 and 14 bit-depth images [18

18. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. **31**(20), 2975–2977 (2006). [PubMed]

*In-*vivo images of a human coronary demonstrate no significant differences between images acquired at 8- and 14-bits suggesting that 8-bit DAQ boards can be used to increase imaging speeds in clinical OFDI systems.

## 2. Principles

**11**(18), 2183–2189 (2003). [PubMed]

10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. **28**(21), 2067–2069 (2003). [PubMed]

12. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. **28**(20), 1981–1983 (2003). [PubMed]

19. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express **15**(25), 16390–16399 (2007). [PubMed]

1. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express **11**(22), 2953–2963 (2003). [PubMed]

20. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express **11**(26), 3598–3604 (2003). [PubMed]

21. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express **14**(13), 5937–5944 (2006). [PubMed]

15. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express **14**(8), 3225–3237 (2006). [PubMed]

## 3. Noise analysis

### 3.1 OFDI noise

1. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express **11**(22), 2953–2963 (2003). [PubMed]

**11**(18), 2183–2189 (2003). [PubMed]

10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. **28**(21), 2067–2069 (2003). [PubMed]

11. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express **11**(8), 889–894 (2003). [PubMed]

19. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express **15**(25), 16390–16399 (2007). [PubMed]

*A*and the total noise given as

^{2}/Hz*e*is the electrical charge, η the quantum efficiency of the detector,

*h*Plank’s constant, and

*ν*the frequency of the laser light. The RIN noise is due to fluctuations in the laser power:where τ

_{coh}is the coherence function of the laser. Lasers with narrow instantaneous line widths generally have larger RIN compared with more broadband lasers.

*P*), the system can approach a shot noise limited sensitivity given by

_{ref}>> P_{sam}*3.2* Quantization noise

^{b}where

*b*is the number of bits in the DAQ. The spacing of these levels is determined by the full scale voltage range and given by

## 4. Experiments

### 4.1 OFDI System

8. M. J. Suter, B. J. Vakoc, P. S. Yachimski, M. Shishkov, G. Y. Lauwers, M. Mino-Kenudson, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging,” Gastrointest. Endosc. **68**(4), 745–753 (2008). [PubMed]

**11**(22), 2953–2963 (2003). [PubMed]

7. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. **12**(12), 1429–1433 (2006). [PubMed]

24. S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express **12**(20), 4822–4828 (2004). [PubMed]

### 4.2 Noise measurements

*V*(3V, 1.6V, 1V). The thermal noise was then determined by digitizing the signal from the detector (Thorlabs PDB110C) while the optical signals were blocked, and subtracting the DAQ noise component. The results are shown in Fig. 2 . All noise values were converted to

_{max}*10*log*so that they could be compared with the optical shot and RIN noise terms. It can be seen that the thermal noise of the detector was roughly 10-20 dB greater than the DAQ noise for all values of Vmax. The average thermal noise between 15 and 25 MHz was 3.6 pA/√Hz which compares very well with the manufacturer’s detector specification of 3.8 pA/√Hz. The theoretical quantization noise at 3V

_{10}(pA^{2}/Hz)*V*was −8.5 pA

_{max}^{2}/Hz which was nearly 10 dB lower than the measured DAQ noise. This trend held true for all values of

*V*. Hence, the quantization noise was ignored. The spikes in the DAQ noise measurements were fixed pattern noise of unknown origin. We suspect they are the result of aliased harmonics of the sampling frequency as no signal was input on the DAQ during these measurements.

_{max}*P*is a fit factor that represents both the coherence function of the laser and the dual-balanced RIN noise reduction and

_{RIN}*γ*is a correction factor that accounts for differences in the detector quantum efficiency used in the fit and aliasing effects. The result of the fit is shown in Fig. 3 with

*γ*equal to 0.83 and

*P*equal to 2.48E-15. The fit and the experimental result match very well for reference powers ranging from 20 to 180 µW. Quantization noise was not included in this fit because the data was digitized at 14 bits and the quantization noise was small relative to the shot and RIN noise terms.

_{RIN}### 4.3 Bit-depth reduction

**11**(22), 2953–2963 (2003). [PubMed]

24. S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express **12**(20), 4822–4828 (2004). [PubMed]

^{14}. The index value was converted to a voltage using the known Vmax and Δ quantization spacing for 14 bits. For each bit level, a new Δ was calculated and a resampled voltage was generated usingwhere

^{14}quantization levels into 2

^{b}levels usingwhere the

## 5. *In vivo* imaging

## 6. Discussion

25. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express **16**(12), 8916–8937 (2008). [PubMed]

*a priori*and a highly backscattering signal could in principle exceed Vmax. As discussed above, increasing Vmax will increase the quantization noise and introduce higher SNR loss at decreased bit-depth. We do not believe this to be a major limitation because high quality OFDI images rarely exceed 50 dB of dynamic range and we have demonstrated that at least 63.0 dB of dynamic range at 8-bits is achievable.

## 7. Conclusion

## Acknowledgements

## References and links

1. | S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express |

2. | M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express |

3. | J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. |

4. | W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express |

5. | Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. |

6. | B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express |

7. | S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. |

8. | M. J. Suter, B. J. Vakoc, P. S. Yachimski, M. Shishkov, G. Y. Lauwers, M. Mino-Kenudson, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging,” Gastrointest. Endosc. |

9. | G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” J Am Coll Cardiol Img |

10. | J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. |

11. | R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express |

12. | S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. |

13. | W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. |

14. | W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. |

15. | R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express |

16. | P. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D. |

17. | Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Express |

18. | R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. |

19. | Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express |

20. | S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express |

21. | H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express |

22. | M. Choma, K. Hsu, and J. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. |

23. | A. V. Oppenheim, and R. W. Shafer, |

24. | S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express |

25. | C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express |

26. | I. Analog Devices, |

27. | B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express |

**OCIS Codes**

(110.4280) Imaging systems : Noise in imaging systems

(170.3890) Medical optics and biotechnology : Medical optics instrumentation

(170.4500) Medical optics and biotechnology : Optical coherence tomography

**ToC Category:**

Medical Optics and Biotechnology

**History**

Original Manuscript: April 28, 2009

Revised Manuscript: June 26, 2009

Manuscript Accepted: July 30, 2009

Published: September 9, 2009

**Virtual Issues**

Vol. 4, Iss. 11 *Virtual Journal for Biomedical Optics*

**Citation**

Brian D. Goldberg, Benjamin J. Vakoc, Wang-Yuhl Oh, Melissa J. Suter, Sergio Waxman, Mark I. Freilich, Brett E. Bouma, and Guillermo J. Tearney, "Performance of reduced bit-depth acquisition for optical frequency domain imaging," Opt. Express **17**, 16957-16968 (2009)

http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-17-19-16957

Sort: Year | Journal | Reset

### References

- S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003). [PubMed]
- M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [PubMed]
- J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1200–1204 (1999).
- W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008). [PubMed]
- Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
- B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005). [PubMed]
- S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006). [PubMed]
- M. J. Suter, B. J. Vakoc, P. S. Yachimski, M. Shishkov, G. Y. Lauwers, M. Mino-Kenudson, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging,” Gastrointest. Endosc. 68(4), 745–753 (2008). [PubMed]
- G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-Dimensional Coronary Artery Microscopy by Intracoronary Optical Frequency Domain Imaging,” J Am Coll Cardiol Img 1, 752–761 (2008).
- J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [PubMed]
- R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [PubMed]
- S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003). [PubMed]
- W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30(23), 3159–3161 (2005). [PubMed]
- W. Y. Oh, S. H. Yun, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring,” Appl. Phys. Lett. 88(10), 103902–103903 (2006).
- R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006). [PubMed]
- P. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D. 38(15), 2519–2535 (2005).
- Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Express 12(25), 6184–6191 (2004). [PubMed]
- R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006). [PubMed]
- Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007). [PubMed]
- S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003). [PubMed]
- H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006). [PubMed]
- M. Choma, K. Hsu, and J. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
- A. V. Oppenheim, and R. W. Shafer, Discrete-Time Signal Processing, 2nd ed. (Prentice-Hall, Inc, Upper Saddle River, NJ, 1999).
- S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004). [PubMed]
- C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008). [PubMed]
- I. Analog Devices, Data Conversion Handbook (Newnes, 2004).
- B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005). [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.