OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 12 — Sep. 30, 2010
« Show journal navigation

Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator

Huan Wang and Ka-Di Zhu  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 16175-16182 (2010)
http://dx.doi.org/10.1364/OE.18.016175


View Full Text Article

Acrobat PDF (833 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have theoretically investigated a hybrid nanocrystal complex consisted of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) embedded in a nanomechanical resonator in the simultaneous presence of a strong control field and a weak probe field. It is shown that the resonance amplification peak of the probe spectrum will enhance dramatically due to the coupling of the plasmon, exciton and nanomechanical resonator. The enhancement increases significantly with decreasing the distance between the metal nanoparticle and a quantum dot, which implies the strong plasmon enhancement effect in this coupled system. The results obtained here may have the potential applications such as tunable Raman lasers and bio-sensors.

© 2010 Optical Society of America

1. Introduction

Metal-nanoparticle(MNP) plasmonics is an area of considerable current interest in photonics owing to its significant applications in solar cell, biochemical sensing, optical computing and medical field [1–4

1. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997). [CrossRef] [PubMed]

]. The collective surface charge oscillations on MNP, known as plasmon, have excellent optical properties to strongly confine the optical field within and around MNP, and greatly enhance nonlinear interactions [5–8

5. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698 (2007). [CrossRef] [PubMed]

]. In particular, gold and silver nanoparticles are known to exhibit pronounced resonances in the visible. Recently, the hybrid systems of plasmonics coupled with semiconductor dye molecules, or quantum dots have been intensively studied due to their extraordinary properties such as the enhancement of radiative emission rates, absorption of the exciton light and non-radiative energy transfer [8–10

8. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145 (2007). [CrossRef] [PubMed]

]. Kühn et al. [11

11. S. Khn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett 97, 017402 (2006). [CrossRef]

] investigated the coupling of a single molecule to a single spherical gold nanoparticle acting as a nanoantenna, and measured a strong enhancement in the fluorescence intensity. Artuso et al. [12

12. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle system: Double peaked Fano structure and bistability,” Nano Lett. 8, 2106 (2008). [CrossRef] [PubMed]

] found the double peaked Fano structure and bistability in the response of strongly coupled quantum dot-metal nanoparticle system. Sadeghi [13

13. S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009). [CrossRef]

] further studied metaresonances which generates Rabi oscillation in quantum dots via plasmons. Lu and Zhu [14

14. Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008). [CrossRef]

, 15

15. Z. E. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009). [CrossRef]

] theoretically demonstrated enhanced Kerr nonlinear coefficients and slow light effect in this artificial hybrid nanocrystal system. Moreover, plasmon fields have long been proved to be essential to increase the efficiency of different kinds of physical processes such as Raman scattering [16–18

16. A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143 (1992). [CrossRef]

]. Surface plasmon enhanced Raman scattering has already been used to detect Raman signals to those cannot been detected by conventional Raman spectroscopy [19

19. M. Becker, V. Sivakov, G. Andr, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007). [CrossRef] [PubMed]

].

On the other hand, kinds of nanomechanics and optomechanics are widely studied and used to measure the extremely small displacement and extremely weak force [20

20. K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass detection,” Appl. Phys. Lett. 84, 4469 (2004). [CrossRef]

, 21

21. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004). [CrossRef] [PubMed]

]. Those nanoscale mechanics are also promising to be employed in biology, medicine and chemistry [22–24

22. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2006). [CrossRef]

]. Some of the more exciting transduction effects are focusing on coupling nanomechanics to nanocrystal and mesoscopic devices [25

25. I. Wilson-Rae, P. Zoller, and A. Imamolu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004). [CrossRef] [PubMed]

]. In the present article, we will investigate a hybrid nanocrystal complex consisted of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) embedded in a nanomechanical resonator in the simultaneous presence of a strong contol field and a weak probe field. Due to the coupling among the plasmon, exciton and nanomechanical resonator mode, the resonance absorption peak and amplification peak of the probe absorption spectrum will be dramatically enhanced. We illustrate that the enhancement can be continuously adjusted by the separation of the metal nanoparticle and quantum dot. Approximate several orders of magnitude of the enhancement in amplification peak can be achieved in this coupled hybrid system. Such an advantage may lead to a potential application in the technique of nanoscale optical devices such as tunable Raman lasers and bio-sensors.

2. Theory

We consider a hybrid complex consisted of a MNP and a SQD coupled to a nanomechanical resonator. The hybrid system is subjected by a strong control field and a weak probe field as shown in Fig. 1. In the schematic, the SQD is embedded in the center of the nanomechanical beam. In low temperature, we assume a simple two-level model for the SQD which consists of a ground state ∣0〉 and the first excited state(single exciton)∣ex〉 [26

26. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002). [CrossRef] [PubMed]

, 27

27. S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system,” Phys. Rev. B 72, 121301 (2005). [CrossRef]

]. Usually the two-level states can be characterized by the pseudospin operators S ± and Sz. A single gold MNP attached to the end of a sharp optical fibre tip is positioned above the SQD. A scanning near-field optical microscopy is used to position the tip and to stabilize its distance [11

11. S. Khn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett 97, 017402 (2006). [CrossRef]

,28

28. T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309 (2004). [CrossRef]

,29

29. T. Kalkbrenner, U. Håkanson, A. Schdle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005). [CrossRef] [PubMed]

]. The gold MNP has the radius a 0 and a center-to-center distance R towards the SQD. In the nanomechanical beam whose thickness is smaller than its width, the resonator mode can be described by a single mode phonon with annihilation operator a and creation operator a + [25

25. I. Wilson-Rae, P. Zoller, and A. Imamolu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004). [CrossRef] [PubMed]

]. Since the flexion induces extensions and compressions in the structure, this longitudinal strain will modify the energy of the electronic states of SQD through the deformation potential coupling, then the SQD will couple to the nanomechanical resonator. Considering the exciton in SQD interacts with a strong control field Ec with frequency ωc and a weak probe field Es with frequency ωs simultaneously, the total Hamiltonian of the coupled system reads as follows [9

9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006). [CrossRef] [PubMed]

, 25

25. I. Wilson-Rae, P. Zoller, and A. Imamolu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004). [CrossRef] [PubMed]

, 30

30. J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008). [CrossRef]

]

H=ωexSz+ωnaa+ωnβSz(a+a)μ(ESQDS+ESQD*S),
(1)

where ωex and ωn are the frequency of exciton and resonator mode respectively, β is the coupling strength of the resonator mode and SQD, μ is the interband dipole matrix element and ESQD is the total optical field felt by the SQD. In a rotating frame at the control field frequency ωc, the total Hamiltonian is given by

H=ΔSz+ωnaa+ωnβSz(a+a)μ(E˜SQDS+E˜SQD*S),
(2)

where Δ = ωexωc is the frequency difference between the exciton and control field. E˜SQD=Ec+Eseiδt+SαPMNPεeff1R3 , with εeff1=2ε0+εs3ε0 , ε 0 and εs are the dielectric constants of the background medium and SQD, respectively. δ = ωcωs is the detuning of the probe and control field. Sα is polar factor for electric field polarization and Sα = 2 corresponds that the polar direction is along the z axis of the hybrid system. PMNP is the dipole which comes from the charge induced by the probe field. For a spherical particle whose radius is much smaller than the wavelength of light, the electric field is uniform across the particle and the electrostatic(Rayleigh) approximation is a good one. Then the PMNP is given by PMNP=γa3[Ec+Eseiδt+SαPSQDεeff2R3] , where γ=εAu(ω)ε02ε0+εAu(ω) , εeff2=2ε0+εAu(ω)3ε0 [9

9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006). [CrossRef] [PubMed]

, 30

30. J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008). [CrossRef]

], εAu(ω)=1ωp2ω(ω+iγAu) is the MNP’s dielectric constant, ωp and γAu are the bulk metal plasma frequency and the frequency-dependent damping, respectively. The imaginary part of relative permittivity εAu determines the metallic losses [31

31. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136 (2008). [CrossRef]

, 32

32. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31, 2592 (2006). [CrossRef] [PubMed]

]. The dipole moment of the SQD is expressed via the off-diagonal elements of the density matrix: PSQD = μS [33

33. A. Yariv, Quantum Electronics (Wiley, New York, 1975).

]. The dipole approximation used here is reasonable when the distance R is large and the exciton-plasmon interaction is relatively weak [30

30. J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008). [CrossRef]

]. Therefore the total optical field felt by the SQD is ESQD = A(Ec + Ese −iδt) + μBS , where A=1+γa3Sαεeff1R3 , B=γa3Sα2εeff1εeff2R6 .

Fig. 1. Schematic diagram of a metal nanoparticle and a quantum dot embedded in a nanomechanical resonator and the energy-level diagram of an exciton coupled to plasmons and phonons.

The Heisenberg equation of motion dO/dt = −i[O,H]/ gives the temporal evolutions of the exciton in the SQD and the nanomechanical resonator. The commutation relation [Sz,S ±] = ±S ±, [S ,S ] = 2Sz and [a ,a] = 1 can be used. If we set Q = a + a, and ignore the quantum properties of Sz, S and Q, then the semiclassical equations read as follows

dSzdt=Γ1(Sz+12)+iΩ(A*SAS)+iμ2SS(BB*)+iμ(A*Es*SeiδtAEsS+eiδt).
(3)
dSdt=[Γ2+i(Δ+ωnβQ)]Si2ΩASzi2μAEseiδti2μ2SzS,
(4)
d2Qdt2+γndQdt+ωn2Q=2βωn2Sz,
(5)

χ(ωs)=A2Dw0[(2E+2Ω02A)(C+δ0)2B0ω02Aw0]Aw0GCGD[A*(Dδ0)+iBI0Aw0][(2E+2ω0A)(C+δ0)2B0Ω02Aw0],
(6)

where C = Δ0δ 0ω n0 β 2 w 0 + B R0 w 0i(1−B I0 w 0), D0+δ 0ω n0 β 2 w 0 + B R0 w 0 + i(1 − B I0 w 0), E = Ω2 0 ω n0 β 2 w 0 η/(Δ0ω n0 β 2 w 0 + B R0 w 0i(1 − B I0 w 0)), F = Ω2 0 ω n0 β 2 w 0 η/(Δ0ω n0 β 2 w 0 + B R0 w 0 + i(1 − B I0 w 0)), G = [A(C + δ 0) − i2B I0 Aw 0] [(2F + 2Ω2 0 A) (Dδ 0) − 2B * 0Ω2 0 Aw 0] − iD10 0) (C+δ 0) (Dδ 0), where η = ω 2 n/(ω 2 nδ 2nδ), w 0 = 2Sz 0, δ 0 = δ2, Ω0 = Ω/Γ2, ω n0 = ωn2, Δ0 = Δ/Γ2, Γ10 = Γ12, B 0 = μ 2 B/(Γ2), B R0 = Re(B 0), and B I0 = Im(B 0). Due to the presence of the MNP, the decay rate of the exciton will increase. Zhang et al. [9

9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006). [CrossRef] [PubMed]

] have shown that the plasmon-exciton interaction leads to the formation of a hybrid exciton with the shifted exciton frequency and the decreased lifetime, which are determined by BR and BI respectively. The population inversion of exciton(w 0) is determined by the equation

(w0+1)[(1BI0w0)2+(Δ0ωn0β2w0+BR0w0)2]+2Ω02A2w0=0.
(7)

3. Numerical results and discussion

Fig. 2. The probe absorption spectrum as a function of the detuning between probe field and exciton with or without MNP for several separations. The parameters are Γ1 = 2Γ2 = 0.3GHz, ωn = 1.2GHz, γn = 1 × 10−4 GHz, β = 0.06, Δ = 1.2GHz, Ω2 = 0.09(GHz)2, a 0 = 2.5nm, μ = 40D, ωp = 1.37 × 103 THz, γAu = ωp/60. The inset shows the relation between the splitting and the center to center distance R between MNP and SQD.

Figure 3(a) shows the absorption spectrum of the probe field as a function of Δs in the case Δ = 0 and the system without the MNP coupling to the SQD. From this figure, we can see that for each value of ωn another two sharp peaks appear at sidebands which exactly locate at δ = ±ωn. Part (b) of Fig. 3 shows the absorption peak and amplification peak will be dramatically enhanced as the SQD coupled to the MNP. This is due to the plasmon enhancement effect. The plasmon polarizes the exciton in SQD, and increases the population inversion of exciton. Then absorption of the light by SQD and radiative emission rates will increase. When the exciton decays finally, it will emit more intensive fields than the system without MNP. As it is shown in Fig. 3(b), the enhancement can be continuously adjusted by the separation of the MNP and SQD. When the separation is 16nm, the enhanced peak will be almost 3 times larger than the system without MNP. From Fig. 3(b), we can also find that the full width at half maximum of the peak will reduce as the separation diminishes.

The gain enhancement and absorption enhancement as a function of separation between SQD and gold MNP are shown in Fig. 4. As the decrease of the separation between MNP and SQD, the gain enhancement will have an exponential increase. Especially, at a separation of 14.8 nm, approximate three orders of magnitude of the enhancement in amplification peak can be achieved in this coupled system. Such an advantage may lead to a potential application in Raman lasers.

Fig. 3. (a) The absorption spectrum of the probe field as a function of probe-exciton detuning. Γ1 = 2Γ2 = 0.3GHz, ωn = 1.2GHz, γn = 1 × 10−4 GHz, β = 0.06, Δ = 0, Ω2 = 0.09(GHz)2. (b)The resonance absorption and amplification peaks as a function of probe-exciton detuning for different separations between MNP and SQD, a 0 = 2.5nm, μ = 40D, ωp = 1.37 × 103 THz, γAu = ωp/60.
Fig. 4. The gain enhancement and absorption enhancement as a function of the separation between gold MNP and SQD. The other parameters are the same as in Fig.3.

4. Conclusion

To conclude, we have theoretically investigated a hybrid nanocrystal complex embedded in a nanomechanical resonator. We illustrate that the resonance absorption peak and amplification peak will enhance dramatically owing to the coupling among the plasmon, exciton and nanomechanical resonator mode. We also discuss the relation between the enhancement and the distance of MNP and SQD, and show that the enhancement can be continuously adjusted by the separation of the metal nanoparticle and quantum dot. Approximate several orders of magnitude of the enhancement in amplification peak can be achieved in this coupled system. The results obtained here may have the potential applications of nanoscale optical devices such as tunable Raman lasers and bio-sensors.

Acknowledgments

The authors gratefully acknowledge support from National Natural Science Foundation of China (No.10774101 and No.10974133) and the National Ministry of Education Program for Training Ph.D.

References and links

1.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997). [CrossRef] [PubMed]

2.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003). [CrossRef] [PubMed]

3.

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620 (2007). [CrossRef] [PubMed]

4.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Mhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005). [CrossRef] [PubMed]

5.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698 (2007). [CrossRef] [PubMed]

6.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508 (2006). [CrossRef] [PubMed]

7.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

8.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145 (2007). [CrossRef] [PubMed]

9.

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006). [CrossRef] [PubMed]

10.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006). [CrossRef]

11.

S. Khn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett 97, 017402 (2006). [CrossRef]

12.

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle system: Double peaked Fano structure and bistability,” Nano Lett. 8, 2106 (2008). [CrossRef] [PubMed]

13.

S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009). [CrossRef]

14.

Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008). [CrossRef]

15.

Z. E. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009). [CrossRef]

16.

A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143 (1992). [CrossRef]

17.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005). [CrossRef] [PubMed]

18.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008). [CrossRef] [PubMed]

19.

M. Becker, V. Sivakov, G. Andr, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007). [CrossRef] [PubMed]

20.

K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass detection,” Appl. Phys. Lett. 84, 4469 (2004). [CrossRef]

21.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004). [CrossRef] [PubMed]

22.

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2006). [CrossRef]

23.

M. E. Dickinson, K. V. Wolf, and A. B. Mann, “Nanomechanical and chemical characterization of incipient in vitro carious lesions in human dental enamel,” Arch. Oral Biol. 52, 753 (2007). [CrossRef] [PubMed]

24.

S. H. Lim, D. Raorane, S. Satyanarayana, and A. Majumdar, “Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis,” Sens. Actuators B 119, 466 (2006). [CrossRef]

25.

I. Wilson-Rae, P. Zoller, and A. Imamolu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004). [CrossRef] [PubMed]

26.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002). [CrossRef] [PubMed]

27.

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system,” Phys. Rev. B 72, 121301 (2005). [CrossRef]

28.

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309 (2004). [CrossRef]

29.

T. Kalkbrenner, U. Håkanson, A. Schdle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005). [CrossRef] [PubMed]

30.

J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008). [CrossRef]

31.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136 (2008). [CrossRef]

32.

I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31, 2592 (2006). [CrossRef] [PubMed]

33.

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

34.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, California, 1992) p. 225.

35.

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled nanomechanical resonator-quantum dot system,” Appl.Phys.Lett. 94, 063116 (2009). [CrossRef]

OCIS Codes
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(240.6680) Optics at surfaces : Surface plasmons
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 12, 2010
Revised Manuscript: June 28, 2010
Manuscript Accepted: June 29, 2010
Published: July 15, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Huan Wang and Ka-Di Zhu, "Coherent optical spectroscopy of a hybrid nanocrystal complex embedded in a nanomechanical resonator," Opt. Express 18, 16175-16182 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-15-16175


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997). [CrossRef] [PubMed]
  2. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-overhand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003). [CrossRef] [PubMed]
  3. A. O. Govorov, and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620 (2007). [CrossRef] [PubMed]
  4. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005). [CrossRef] [PubMed]
  5. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698 (2007). [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508 (2006). [CrossRef] [PubMed]
  7. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).
  8. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145 (2007). [CrossRef] [PubMed]
  9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006). [CrossRef] [PubMed]
  10. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006). [CrossRef]
  11. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef]
  12. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle system: Double peaked Fano structure and bistability,” Nano Lett. 8, 2106 (2008). [CrossRef] [PubMed]
  13. S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009). [CrossRef]
  14. Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008). [CrossRef]
  15. Z. E. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009). [CrossRef]
  16. A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143 (1992). [CrossRef]
  17. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005). [CrossRef] [PubMed]
  18. H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008). [CrossRef] [PubMed]
  19. M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007). [CrossRef] [PubMed]
  20. K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass detection,” Appl. Phys. Lett. 84, 4469 (2004). [CrossRef]
  21. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004). [CrossRef] [PubMed]
  22. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2006). [CrossRef]
  23. M. E. Dickinson, K. V. Wolf, and A. B. Mann, “Nanomechanical and chemical characterization of incipient in vitro carious lesions in human dental enamel,” Arch. Oral Biol. 52, 753 (2007). [CrossRef] [PubMed]
  24. S. H. Lim, D. Raorane, S. Satyanarayana, and A. Majumdar, “Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis,” Sens. Actuators B 119, 466 (2006). [CrossRef]
  25. I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004). [CrossRef] [PubMed]
  26. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002). [CrossRef] [PubMed]
  27. S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system,” Phys. Rev. B 72, 121301 (2005). [CrossRef]
  28. T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309 (2004). [CrossRef]
  29. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005). [CrossRef] [PubMed]
  30. J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008). [CrossRef]
  31. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136 (2008). [CrossRef]
  32. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31, 2592 (2006). [CrossRef] [PubMed]
  33. A. Yariv, Quantum Electronics (Wiley, New York, 1975).
  34. R. W. Boyd, Nonlinear Optics (Academic, San Diego, California, 1992) p.225.
  35. J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled nanomechanical resonator-quantum dot system,” Appl. Phys. Lett. 94, 063116 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited