OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010
« Show journal navigation

Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy

Nadine Gröner, Jérémie Capoulade, Christoph Cremer, and Malte Wachsmuth  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 21225-21237 (2010)
http://dx.doi.org/10.1364/OE.18.021225


View Full Text Article

Acrobat PDF (1217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.

© 2010 OSA

1. Introduction

Since its inception in the 1970s [1

1. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974). [CrossRef]

, 2

2. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974). [CrossRef] [PubMed]

] fluorescence correlation spectroscopy (FCS) has emerged as a very useful method for probing transport, diffusion and interactions of biomolecules in vitro and in vivo [3

3. D. A. Bulseco, D. E. Wolf, S. Greenfield, and E. W. David, “Fluorescence Correlation Spectroscopy: Molecular Complexing in Solution and in Living Cells,” in Digital Microscopy, 3rd Edition (Academic Press, 2007), pp. 525–559.

5

5. M. Wachsmuth, and K. Weisshart, “Fluorescence photobleaching and fluorescence correlation spectroscopy: two complementary technologies to study molecular dynamics in living cells,” in Imaging Cellular and Molecular Biological Functions (Springer Verlag, Heidelberg, 2007).

]. It offers information at the single molecule level while it ensures good statistical relevance by averaging over the behavior of many molecules. FCS is based on a confocal laser illumination and fluorescence detection scheme providing a small diffraction-limited focus as observation volume. The detection of fluctuations in molecular concentrations and (bio-)chemical states within this volume allows to determine diffusion and interaction properties even in subcellular structures by computing the temporal autocorrelation function of the fluorescence signal emitted from within the focus. FCS covers a concentration range between ~100 pM and ~1 μM and a time scale between nanoseconds and seconds.

Due to the suppression of scattered light and the diffraction-limited resolution in three dimensions, a confocal setup allows to probe the spatial distribution of fluorescent molecules by raster-scanning pixel by pixel and line by line the focus over the sample using rotary galvanometer-driven mirrors effectively located in the back focal plane of the objective lens [6

6. W. B. Amos and J. G. White, “How the confocal laser scanning microscope entered biological research,” Biol. Cell 95(6), 335–342 (2003). [CrossRef] [PubMed]

8

8. J. Pawley, Handbook of Biological Confocal Microscopy (Springer, Berlin, 2006).

]. This forms the foundation of confocal laser scanning microscopy (CLSM), a mode of fluorescence microscopy widely used in modern biology to visualize cells and cellular components.

A confocal image frame is usually assumed to be taken instantaneously, and time-resolved information is obtained from time series of images. For example, in an imaging-based fluorescence recovery after photobleaching (FRAP) experiment, an area of a cell is depleted of fluorescent molecules by photobleaching induced by high-intensity illumination [5

5. M. Wachsmuth, and K. Weisshart, “Fluorescence photobleaching and fluorescence correlation spectroscopy: two complementary technologies to study molecular dynamics in living cells,” in Imaging Cellular and Molecular Biological Functions (Springer Verlag, Heidelberg, 2007).

, 9

9. G. Rabut, J. Ellenberg, D. Spector, and D. Goldman, “Photobleaching Techniques to Study Mobility and Molecular Dynamics of Proteins in Live Cells: FRAP, iFRAP, and FLIP,” in Live Cell Imaging - A Laboratory Manual (CSHL Press, Cold Spring Harbor, 2005), pp. 101–126.

, 10

10. M. E. van Royen, P. Farla, K. A. Mattern, B. Geverts, J. Trapman, and A. B. Houtsmuller, “Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells,” Methods Mol. Biol. 464, 363–385 (2009). [CrossRef]

]. Subsequently the redistribution of the remaining fluorescent molecules and the corresponding recovery of the fluorescence signal are observed over time. Moreover, in some image correlation spectroscopy (ICS) approaches [11

11. N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993). [CrossRef] [PubMed]

, 12

12. N. O. Petersen, R. Rigler, and E. S. Elson, “FCS and spatial correlations on biological surfaces,” in Fluorescence Correlation Spectroscopy - Theory and Applications (Springer, Heidelberg, 2001), pp. 162–184.

] the signal at each pixel is extracted from every frame to obtain intensity traces for every pixel comparable to FCS data [13

13. D. L. Kolin, S. Costantino, and P. W. Wiseman, “Sampling effects, noise, and photobleaching in temporal image correlation spectroscopy,” Biophys. J. 90(2), 628–639 (2006). [CrossRef]

15

15. D. L. Kolin and P. W. Wiseman, “Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells,” Cell Biochem. Biophys. 49(3), 141–164 (2007). [CrossRef] [PubMed]

], albeit with a time resolution well above 1 ms.

Usually RICS is performed with fixed scanner settings resulting in pre-defined spatio-temporal sampling. However, it would be desirable to uncouple spatial and temporal sampling while retaining the major benefit of RICS, i.e. access to spatially resolved mobility information from confocal images. Moreover, without a priori knowledge of the time scale of the processes of interest it is sometimes difficult to adjust the sampling properly. Therefore we present here an extension of the concept of RICS to series of scanning velocities: several time series of the same sample are acquired, for which the pixel dwell time is varied whereas the other parameters are kept constant, corresponding to several RICS measurements and referred to in the following as multiple scan speed intensity correlation spectroscopy (msICS). The correlated image is computed in the same way as for RICS. However, instead of plotting the correlation function over the pixel shift for a fixed pixel dwell and line scan time, which is determined by the pixel dwell time and the number of pixels per line, we use the different pixel dwell/line scan times to generate a temporal autocorrelation function for every pixel shift, see Fig. 1c. In order to create a correlation function over a broad time scale, the correlation values for the various pixel dwell times are taken for a fixed pixel shift along the line and combined with the correlation values for the various line scan times for the same pixel shift perpendicular to the line. In this way msICS covers a broad dynamic range and in particular for pixel shifts smaller than the diffraction limit, the resulting autocorrelation function resembles a point FCS measurement. When applied to subregions of the images, spatially resolved data can be obtained resulting in maps of corrrelation functions and of parameters derived thereof. In addition to the underlying concept we show here that msICS can be applied even to molecules as fast as fluorophores in solution and free EGFP expressed in HeLa cells.

2. Theory

2.1 Raster image correlation spectroscopy (RICS)

The theoretical foundation of RICS has been published previously [16

16. C. M. Brown, R. B. Dalal, B. Hebert, M. A. Digman, A. R. Horwitz, and E. Gratton, “Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope,” J. Microsc. 229(1), 78–91 (2008). [CrossRef] [PubMed]

, 17

17. M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Measuring fast dynamics in solutions and cells with a laser scanning microscope,” Biophys. J. 89(2), 1317–1327 (2005). [CrossRef] [PubMed]

]. In order to access the dynamic information inscribed into a confocal image the spatial correlation function of an image is computed according to

GRICS(ξ,φ)=I(x,y)I(x+ξ,y+φ)I(x,y)2.
(1)

This contains information about the probability that light detected at pixels (x,y) and (x+ξ,y+φ) stems from the same molecule. The movement of the molecule is independent of the scanning process, thus the autocorrelation curve splits up into two parts: GRICSGD×GS is the product of the diffusion part GD and the scanning part GS.

Using the characteristic diffusion correlation time τdiff=w02/4D, where w 0 is the 1/e 2 radius of the focal volume or point spread function (PSF) of the optical system and D the diffusion coefficient, as well as the pixel dwell time τp and the line scan time τl in τ=τpξ+τlφ and the pixel shift or size in the image (δx×δy) along (x) and perpendicular (y) to the line, we obtain [17

17. M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Measuring fast dynamics in solutions and cells with a laser scanning microscope,” Biophys. J. 89(2), 1317–1327 (2005). [CrossRef] [PubMed]

, 23

23. K. M. Berland, P. T. C. So, Y. Chen, W. W. Mantulin, and E. Gratton, “Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation,” Biophys. J. 71(1), 410–420 (1996). [CrossRef] [PubMed]

25

25. J. Ries, S. Chiantia, and P. Schwille, “Accurate determination of membrane dynamics with line-scan FCS,” Biophys. J. 96(5), 1999–2008 (2009). [CrossRef] [PubMed]

]:
GRICS=1N[1+4D(τpξ+τlφ)w02]1[1+4D(τpξ+τlφ)κ2w02]1/2=GD×exp[(δxξ/w0)2+(δyφ/w0)21+4D(τpξ+τlφ)/w02]=GS×[1+θexp(τpξ+τlφτtrip)]
(2)
with N being the average number of molecules in the focal volume. The last factor describes the occupation of the triplet state we have to consider with the triplet lifetime τtrip and the fraction T of molecules being in the triplet state used in θ=T/(1T) [26

26. J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence Correlation Spectroscopy of Triplet States in Solution: A Theoretical and Experimental Study,” J. Phys. Chem. 99(36), 13368–13379 (1995). [CrossRef]

].

2.2 Estimation of appropriate parameters

For a successful RICS experiment one has to choose appropriately the pixel size, the pixel dwell time and the number of pixels, which altogether determine the line scan time. These parameters are crucial for proper sampling of the diffusion process under investigation and difficult to specifiy especially when the magnitude of the diffusion coefficient is unknown. There are two guidelines to meet this challenge: the pixel size should be 3- to 4-fold smaller than the PSF radius w 0 [17

17. M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Measuring fast dynamics in solutions and cells with a laser scanning microscope,” Biophys. J. 89(2), 1317–1327 (2005). [CrossRef] [PubMed]

] and the pixel dwell time should be chosen according to the expected order of magnitude of the diffusion coefficient [27

27. “LFD Workshop 2006 - Laboratory for Fluorescence Dynamics” (2006), http://www.lfd.uci.edu/workshop/2006/.

].

Alternatively, the range of appropriate parameters for a given diffusion coefficient can be estimated from diffusion theory: the probability to detect a particle in an isotropic and homogenous medium at (r,t) that has resided earlier at (r=0,t=0) is given as
P(r,t)=(4πDt)3/2exp(r24Dt).
(3)
P(r0,t) is maximal at t 0, if

Pt|t=t0=0t0=r026D.
(4)

In order to ensure distinct fluctuations as required for a significant correlation amplitude, r0=w0 is set to allow particles to enter and leave the detection volume. The scan velocity v=δr/τp should be close to r0/t0=6D/w0 (assuming square pixels with δr=δx=δy). In addition, high spatial sampling, δr<w0, should be chosen to ensure that the laser beam can “follow” the particles even though due to oversampling immobile particles can be detected in several neighboring pixels.

2.3 Multiple scan speed image correlation spectroscopy (msICS)

To cover a broad dynamic range of diffusion properties we have developed an extended approach referred to as multiple scan speed image correlation spectroscopy (msICS): the idea is to measure several time series with varying pixel dwell times (achieved by changing the scanning velocity) and otherwise constant settings (corresponding to different RICS experiments). For statistical reasons we may take more than one frame for each pixel dwell time while keeping the total acquisition time for each scan velocity constant. We calculate the correlated image as defined above and as applied for RICS but instead of plotting and fitting the correlation function over the pixel shift (ξ,φ) in two dimensions we take a fixed pixel shift along the line (ξ,0) and plot the correlation values as a function of the pixel dwell time. In the same one-dimensional graph, we take the same pixel shift perpendicular to the line (0,ξ) and plot the correlation values as a function of the line scan time. Since on the one hand the pixel dwell time and the line scan time usually differ by 2-3 orders of magnitude and on the other hand the pixel dwell times lie between ~1 μs an ~1 ms, the resulting correlation function covers a broad time range between ~1 μs and ~1 s as shown in Fig. 1c.

Post data acquisition the shift parameter ξ can be chosen freely, rendering global fits possible. To obtain a comparable number of photons, image series are acquired for the same overall time for every scanning velocity. This results in different numbers of frames for each velocity because it takes longer to acquire a frame for a slow scanning velocity (and a long pixel dwell time) than for a fast scanning velocity (and a short pixel dwell time).

2.4 Correction for photobleaching and slowly mobile or immobile structures

Even when using highly sensitive photon counting detectors and very low laser intensities the acquisition of image series inevitably reduces the number of fluorescent molecules due to photobleaching. Any correlation spectroscopy approach is very sensitive to this because the correlation amplitude is inversely proportional to the concentration, see Eq. (2). Therefore we correct the calculated correlation matrix M corr of each image or region of interest (ROI) i with the respective mean intensity I¯i normalized to the mean intensity of the first image or ROI I¯0:
Mcorr,inew=I¯iI¯0Mcorr,iold
(5)
as suggested previously [16

16. C. M. Brown, R. B. Dalal, B. Hebert, M. A. Digman, A. R. Horwitz, and E. Gratton, “Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope,” J. Microsc. 229(1), 78–91 (2008). [CrossRef] [PubMed]

]. In addition, slowly mobile or immobile structures can result in a correlation overlaying the diffusional contribution. Therefore each ROI is first filtered with a moving average approach [25

25. J. Ries, S. Chiantia, and P. Schwille, “Accurate determination of membrane dynamics with line-scan FCS,” Biophys. J. 96(5), 1999–2008 (2009). [CrossRef] [PubMed]

, 28

28. M. Wachsmuth, “Method for measuring fluorescence fluctuations in the presence of slow signal fluctuations,” US Patent No. 7,154,602 (2006).

] and then correlated: every pixel intensity value vp(x,y) is corrected with the difference between a local mean value v¯local,d(x,y) averaged over an array of d×d pixels centered around (x,y) and the mean value of the ROI v¯global according to

vp,inew=vp,iold(v¯local,dv¯global).
(6)

The parameter d has to be optimized for every experiment and does not necessarily match the ROI size.

2.5 Fluorescence saturation

Taking into consideration the stesps of excitation and emission as parts of the fluorescence process, it can be shown that the fluorescence yield F does not depend linearly on the excitation intensity I but obeys [29

29. G. S. Harms, L. Cognet, P. H. Lommerse, G. A. Blab, and T. Schmidt, “Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy,” Biophys. J. 80, 2396–2408 (2001). [CrossRef] [PubMed]

, 30

30. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, 1999).

,]:
FII+Is
(7)
where Is is referred to as saturation intensity, i.e. the excitation intensity where the fluorescence yield reaches 50% of the maximum or saturation value.

3. Materials and methods

3.1 Mammalian cell culture and in vitro samples

For in vivo experiments, HeLa cells expressing free EGFP were seeded in 8 well Nunc LabTek chambered coverglasses (Thermo Fischer Scientific, Langenselbold, Germany) with phenol red-free RPMI medium. For in vitro experiments, Alexa488 (Invitrogen, Karlsruhe, Germany) and 150 kDa Dextrans labelled with TRITC (Sigma Aldrich, Munich, Germany) were dispensed in 8 well LabTek chambered coverglasses, too, at the concentrations as given below.

3.2 Acquisition of CLSM and FCS data

Confocal fluorescence image series and FCS data were acquired on an inverted Leica confocal laser scanning microscope TCS SP5 AOBS SMD FCS equipped with an HCX Plan Apo CS 63 × /1.2 NA water immersion objective lens (Leica Microsystems, Mannheim, Germany). For excitation, the 488 nm line of an Ar laser was used. The fluorescence was detected with an SPCM-AQR-14 avalanche photodiode (Perkin-Elmer Optoelectronics, Vaudreuil, Canada) behind a bandpass filter offering a transmission window of 500-550 nm. The diameter of the detection pinhole was set to the size of 1 Airy disk. The laser power in the sample was set to well below 200 µW for FCS and below 500 µW for CLSM acquisition. The laser power was measured in front of the objective lens using a Nova II power meter equipped with a PD300 detector (Ophir Optronics, Jerusalem, Israel). In vivo experiments were carried out at 37°C using an incubation chamber enclosing the microsope stage and body (EMBL workshops).

For image acquisition, the physical scanning velocity was determined by the scanning frequency f scan of the galvanometer-driven x axis mirror given in lines per second (Hz), by the zoom factor defining the physical length of the scanned line and by the number of pixels per line. Images were recorded with 16 bit resolution and stored in TIFF format using the LAS AF software of the microscope. With the detector gain the scaling factor between intensity values and photon counts could be changed. The image size was set to Nx×Ny=1025×512 or 512×512 pixels and the pixel size δr to 30 nm. msICS experiments were peformed with a scanning frequency of 500, 400, 200, 150, 100, 75, 50, 35, 20, 15, 10, and 5 Hz.

Due to the sinusoidal scanning process the pixel dwell time depends in principle on the pixel position. However, the duty cycle of the scanner, i.e. the amplitude fraction that is actually used for image formation, is 80% so that one can show that the variation of the pixel dwell time throughout the field of view is less than 10% when restricting the analysis to the central 50% of the image in horizontal direction, which was implemented for all experiments in this study. Therefore we set τl=1/fscan and τp0.258/(fscanNx).

For FCS data acquisition, the beam was parked at a position of interest, and laser illumination and detector read-out were started for typically 60 s. Data were acquired using the PicoQuant SymPhoTime software of the microscope and stored in binary raw format.

3.3 Processing and analysis of images for RICS/msICS and of FCS data

ImageJ (NIH, Bethesda, MD, USA) was used to view image series for RICS and msICS and to select ROIs if applicable. The whole data analysis workflow was developed and run in Matlab (The MathWorks, Natick, MA, USA) using the Image Processing Toolbox. After importing the image files as data matrices, ROIs could be selected. The slowly mobile/immobile background correction was applied according to Eq. (6). The image matrix was autocorrelated directly and weighted to correct for photobleaching as described before in Eq. (5). This was done separately for every taken image and an averaged correlation matrix was calculated. The whole process was repeated for every measured scanning frequency or pixel dwell time, respectively. Finally the desired representation of the data (RICS, msICS) was exctracted and fitted with the model function Eq. (2).

FCS raw data were correlated with the Fluctuation Analyzer software written in our laboratory and fitted with Origin (OriginLab, Northampton, MA, USA) using the equation:
G(τ)=1N(f1[1+(ττdiff,1)α1]1[1+1κ2(ττdiff,1)α1]1/2+(1f1)[1+(ττdiff,2)α2]1[1+1κ2(ττdiff,2)α2]1/2)[1+θexp(ττtrip)]
(8)
which describes two components featuring anomalous diffusion (characterized by τdiff and the anomaly parameter α) and triplet occupation kinetics [31

31. M. Wachsmuth, W. Waldeck, and J. Langowski, “Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy,” J. Mol. Biol. 298(4), 677–689 (2000). [CrossRef] [PubMed]

].

4. Results and discussion

4.1 Characterization of the PSF – saturation effects and the w0 map

To ensure that the focal volume of the laser beam is sufficiently homogenous throughout the field of view (FOV) and does not affect the resulting diffusion coefficient, we generated a map of 9×9 FCS point measurements of 20 nM Alexa 488 (5×60 s each) yielding the characteristic diffusion correlation time τdiff and structure parameter κ. Using D Alexa, 20°C = 210 μm2 s–1 [35

35. K. P. Müller, F. Erdel, M. Caudron-Herger, C. Marth, B. D. Fodor, M. Richter, M. Scaranaro, J. Beaudouin, M. Wachsmuth, and K. Rippe, “Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy,” Biophys. J. 97(11), 2876–2885 (2009). [CrossRef] [PubMed]

], distribution maps of the lateral focal radius w 0 in µm and the focal volume V 0 in μm3 or fl, respectively, were obtained, see Fig. 2b, c. Average values for w 0 and V 0 are 0.140±0.003 µm and 0.126±0.017 fl, respectively, for the central 3×3 array of 81×81 µm2 and 0.141±0.005 µm and 0.125±0.016 fl, respectively, for the central 5×5 array of 135×135 µm2. Thus in these areas, to which the experiments were restricted, the focal volume can be assumed constant.

4.2 RICS experiments

RICS experiments were done to verify the guidelines given in Eq. (4) and by Digman et al. [17

17. M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Measuring fast dynamics in solutions and cells with a laser scanning microscope,” Biophys. J. 89(2), 1317–1327 (2005). [CrossRef] [PubMed]

]. The correlation curves were plotted and fitted for at least the first 30 pixel shifts along the line in x direction, always without ξ=0 because of the strong autocorrelation of the shot noise. Pixel shifts in y direction were not used because the line times are >1 ms and thus much larger than τdiff. Experiments performed with dyes in solution showed that the fitted diffusion coefficient showed some variation with the used scanning velocity. For the same scanning velocity higher sampling yielded better results.

4.3 msICS experiments with fluorophores in solution

4.4 msICS experiments with HeLa cells expressing EGFP

To actually allow to fit the data, a correction for slowly mobile or immobile structures had to be applied as described above using various sizes d of the moving average filter, see Eq. (6). For 50×50 pixel ROIs a useful size was in the range of 31-81 pixels, i.e. large enough to leave the diffusional fluctuations unaffected but small enough to actually remove slow or static fluctuations, so that we applied d=51 to all subsequent experiments.

4.5 Map of diffusion coefficients

5. Conclusion

Multiple scan speed intensity correlation spectroscopy (msICS) is a useful tool to measure and map the diffusion of molecules with spatial resolution in living cells. It extends the concept of RICS and benefits likewise from the fact that widely accessible CLSM equipment can be used. In msICS data, the spatial and the temporal information inscribed into a CLSM image are uncoupled but remain subject to a spatio-temporal correlation analysis. In this way, it covers a broad time regime for the processes of interest, for which a priori knowledge is not required, and provides correlation data that are comparable to conventional FCS experiments. It can be applied to subregions of confocal images in a rasterized way so that maps of correlation functions and of the derived parameters can be created.

Alternative approaches implement fully sequential acquisition of point FCS measurements by scanning the stage or the beam [39

39. N. Dross, C. Spriet, M. Zwerger, G. Müller, W. Waldeck, J. Langowski, and J. Z. Rappoport, “Mapping eGFP oligomer mobility in living cell nuclei,” PLoS ONE 4(4), e5041–e5041 (2009). [CrossRef] [PubMed]

, 41

41. C. M. Roth, P. I. Heinlein, M. Heilemann, and D.-P. Herten, “Imaging diffusion in living cells using time-correlated single-photon counting,” Anal. Chem. 79(19), 7340–7345 (2007). [CrossRef] [PubMed]

] with comparably high temporal resolution but either limited range of accessible lag times or comparably long total measurement time, or they employ multifocal camera-based setups for parallelized acquisition [42

42. G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38(6), 813–828 (2009). [CrossRef] [PubMed]

44

44. D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96(12), 5050–5059 (2009). [CrossRef] [PubMed]

] where the measurement time is significantly reduced, however at the cost of time resolution. Our approach bridges the gap between dedicated custom-designed setups and the conventional CLSM with the corresponding raster-scanning scheme as used for msICS ideally in combination with photon-counting detectors. It makes msICS a promising tool to measure and map even more complex diffusion processes with data similar to conventional FCS.

Acknowledgements

This work was supported by the EpiSys project within the BMBF SysTec program. We would like to thank Jessica Kehrer (EMBL) for help with the cell culture, the Advanced Light Microscopy Facility of EMBL for their support, Rolf Borlinghaus and Lioba Kuschel (Leica Microsystems) for fruitful discussions and for providing some of the microsocpy equipment.

References and links

1.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974). [CrossRef]

2.

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974). [CrossRef] [PubMed]

3.

D. A. Bulseco, D. E. Wolf, S. Greenfield, and E. W. David, “Fluorescence Correlation Spectroscopy: Molecular Complexing in Solution and in Living Cells,” in Digital Microscopy, 3rd Edition (Academic Press, 2007), pp. 525–559.

4.

D. Grünwald, M. C. Cardoso, H. Leonhardt, and V. Buschmann, “Diffusion and binding properties investigated by Fluorescence Correlation Spectroscopy (FCS),” Curr. Pharm. Biotechnol. 6(5), 381–386 (2005). [CrossRef] [PubMed]

5.

M. Wachsmuth, and K. Weisshart, “Fluorescence photobleaching and fluorescence correlation spectroscopy: two complementary technologies to study molecular dynamics in living cells,” in Imaging Cellular and Molecular Biological Functions (Springer Verlag, Heidelberg, 2007).

6.

W. B. Amos and J. G. White, “How the confocal laser scanning microscope entered biological research,” Biol. Cell 95(6), 335–342 (2003). [CrossRef] [PubMed]

7.

C. Cremer and T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81(1), 31–44 (1978). [PubMed]

8.

J. Pawley, Handbook of Biological Confocal Microscopy (Springer, Berlin, 2006).

9.

G. Rabut, J. Ellenberg, D. Spector, and D. Goldman, “Photobleaching Techniques to Study Mobility and Molecular Dynamics of Proteins in Live Cells: FRAP, iFRAP, and FLIP,” in Live Cell Imaging - A Laboratory Manual (CSHL Press, Cold Spring Harbor, 2005), pp. 101–126.

10.

M. E. van Royen, P. Farla, K. A. Mattern, B. Geverts, J. Trapman, and A. B. Houtsmuller, “Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells,” Methods Mol. Biol. 464, 363–385 (2009). [CrossRef]

11.

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993). [CrossRef] [PubMed]

12.

N. O. Petersen, R. Rigler, and E. S. Elson, “FCS and spatial correlations on biological surfaces,” in Fluorescence Correlation Spectroscopy - Theory and Applications (Springer, Heidelberg, 2001), pp. 162–184.

13.

D. L. Kolin, S. Costantino, and P. W. Wiseman, “Sampling effects, noise, and photobleaching in temporal image correlation spectroscopy,” Biophys. J. 90(2), 628–639 (2006). [CrossRef]

14.

D. L. Kolin, D. Ronis, and P. W. Wiseman, “k-Space image correlation spectroscopy: a method for accurate transport measurements independent of fluorophore photophysics,” Biophys. J. 91(8), 3061–3075 (2006). [CrossRef] [PubMed]

15.

D. L. Kolin and P. W. Wiseman, “Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells,” Cell Biochem. Biophys. 49(3), 141–164 (2007). [CrossRef] [PubMed]

16.

C. M. Brown, R. B. Dalal, B. Hebert, M. A. Digman, A. R. Horwitz, and E. Gratton, “Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope,” J. Microsc. 229(1), 78–91 (2008). [CrossRef] [PubMed]

17.

M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Measuring fast dynamics in solutions and cells with a laser scanning microscope,” Biophys. J. 89(2), 1317–1327 (2005). [CrossRef] [PubMed]

18.

M. A. Digman and E. Gratton, “Analysis of diffusion and binding in cells using the RICS approach,” Microsc. Res. Tech. 72(4), 323–332 (2009). [CrossRef]

19.

M. A. Digman, P. W. Wiseman, C. Choi, A. R. Horwitz, and E. Gratton, “Stoichiometry of molecular complexes at adhesions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 106(7), 2170–2175 (2009). [CrossRef] [PubMed]

20.

E. Gielen, N. Smisdom, M. Vandeven, B. De Clercq, E. Gratton, M. Digman, J.-M. Rigo, J. Hofkens, Y. Engelborghs, and M. Ameloot, “Measuring Diffusion of Lipid-like Probes in Artificial and Natural Membranes by Raster Image Correlation Spectroscopy (RICS): Use of a Commercial Laser-Scanning Microscope with Analog Detection,” Langmuir (2009).

21.

M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, “Mapping the number of molecules and brightness in the laser scanning microscope,” Biophys. J. 94(6), 2320–2332 (2008). [CrossRef]

22.

V. Vukojević, M. Heidkamp, Y. Ming, B. Johansson, L. Terenius, and R. Rigler, “Quantitative single-molecule imaging by confocal laser scanning microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18176–18181 (2008). [CrossRef] [PubMed]

23.

K. M. Berland, P. T. C. So, Y. Chen, W. W. Mantulin, and E. Gratton, “Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation,” Biophys. J. 71(1), 410–420 (1996). [CrossRef] [PubMed]

24.

D. E. Koppel, F. Morgan, A. E. Cowan, and J. H. Carson, “Scanning concentration correlation spectroscopy using the confocal laser microscope,” Biophys. J. 66(2), 502–507 (1994). [CrossRef] [PubMed]

25.

J. Ries, S. Chiantia, and P. Schwille, “Accurate determination of membrane dynamics with line-scan FCS,” Biophys. J. 96(5), 1999–2008 (2009). [CrossRef] [PubMed]

26.

J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence Correlation Spectroscopy of Triplet States in Solution: A Theoretical and Experimental Study,” J. Phys. Chem. 99(36), 13368–13379 (1995). [CrossRef]

27.

“LFD Workshop 2006 - Laboratory for Fluorescence Dynamics” (2006), http://www.lfd.uci.edu/workshop/2006/.

28.

M. Wachsmuth, “Method for measuring fluorescence fluctuations in the presence of slow signal fluctuations,” US Patent No. 7,154,602 (2006).

29.

G. S. Harms, L. Cognet, P. H. Lommerse, G. A. Blab, and T. Schmidt, “Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy,” Biophys. J. 80, 2396–2408 (2001). [CrossRef] [PubMed]

30.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, 1999).

31.

M. Wachsmuth, W. Waldeck, and J. Langowski, “Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy,” J. Mol. Biol. 298(4), 677–689 (2000). [CrossRef] [PubMed]

32.

I. Gregor, D. Patra, and J. Enderlein, “Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation,” ChemPhysChem 6(1), 164–170 (2005). [CrossRef] [PubMed]

33.

P. Dittrich, F. Malvezzi-Campeggi, M. Jahnz, and P. Schwille, “Accessing molecular dynamics in cells by fluorescence correlation spectroscopy,” Biol. Chem. 382(3), 491–494 (2001). [CrossRef] [PubMed]

34.

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77(4), 2251–2265 (1999). [CrossRef] [PubMed]

35.

K. P. Müller, F. Erdel, M. Caudron-Herger, C. Marth, B. D. Fodor, M. Richter, M. Scaranaro, J. Beaudouin, M. Wachsmuth, and K. Rippe, “Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy,” Biophys. J. 97(11), 2876–2885 (2009). [CrossRef] [PubMed]

36.

J. Beaudouin, F. Mora-Bermúdez, T. Klee, N. Daigle, and J. Ellenberg, “Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins,” Biophys. J. 90(6), 1878–1894 (2006). [CrossRef] [PubMed]

37.

C. Pack, K. Saito, M. Tamura, and M. Kinjo, “Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs,” Biophys. J. 91(10), 3921–3936 (2006). [CrossRef] [PubMed]

38.

M. Wachsmuth, M. Caudron-Herger, and K. Rippe, “Genome organization: balancing stability and plasticity,” Biochim. Biophys. Acta 1783(11), 2061–2079 (2008). [CrossRef] [PubMed]

39.

N. Dross, C. Spriet, M. Zwerger, G. Müller, W. Waldeck, J. Langowski, and J. Z. Rappoport, “Mapping eGFP oligomer mobility in living cell nuclei,” PLoS ONE 4(4), e5041–e5041 (2009). [CrossRef] [PubMed]

40.

A. Bancaud, S. Huet, N. Daigle, J. Mozziconacci, J. Beaudouin, and J. Ellenberg, “Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin,” EMBO J. 28(24), 3785–3798 (2009). [CrossRef] [PubMed]

41.

C. M. Roth, P. I. Heinlein, M. Heilemann, and D.-P. Herten, “Imaging diffusion in living cells using time-correlated single-photon counting,” Anal. Chem. 79(19), 7340–7345 (2007). [CrossRef] [PubMed]

42.

G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38(6), 813–828 (2009). [CrossRef] [PubMed]

43.

B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially Resolved Total Internal Reflection Fluorescence Correlation Microscopy Using an Electron Multiplying Charge-Coupled Device Camera,” Analytical Chemistry (2007).

44.

D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96(12), 5050–5059 (2009). [CrossRef] [PubMed]

OCIS Codes
(100.2960) Image processing : Image analysis
(180.5810) Microscopy : Scanning microscopy
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Microscopy

History
Original Manuscript: July 13, 2010
Manuscript Accepted: August 11, 2010
Published: September 22, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Nadine Gröner, Jérémie Capoulade, Christoph Cremer, and Malte Wachsmuth, "Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy," Opt. Express 18, 21225-21237 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-20-21225


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974). [CrossRef]
  2. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974). [CrossRef] [PubMed]
  3. D. A. Bulseco, D. E. Wolf, S. Greenfield, and E. W. David, “Fluorescence Correlation Spectroscopy: Molecular Complexing in Solution and in Living Cells,” in Digital Microscopy, 3rd Edition (Academic Press, 2007), pp. 525–559.
  4. D. Grünwald, M. C. Cardoso, H. Leonhardt, and V. Buschmann, “Diffusion and binding properties investigated by Fluorescence Correlation Spectroscopy (FCS),” Curr. Pharm. Biotechnol. 6(5), 381–386 (2005). [CrossRef] [PubMed]
  5. M. Wachsmuth, and K. Weisshart, “Fluorescence photobleaching and fluorescence correlation spectroscopy: two complementary technologies to study molecular dynamics in living cells,” in Imaging Cellular and Molecular Biological Functions (Springer Verlag, Heidelberg, 2007).
  6. W. B. Amos and J. G. White, “How the confocal laser scanning microscope entered biological research,” Biol. Cell 95(6), 335–342 (2003). [CrossRef] [PubMed]
  7. C. Cremer and T. Cremer, “Considerations on a laser-scanning-microscope with high resolution and depth of field,” Microsc. Acta 81(1), 31–44 (1978). [PubMed]
  8. J. Pawley, Handbook of Biological Confocal Microscopy (Springer, Berlin, 2006).
  9. G. Rabut, J. Ellenberg, D. Spector, and D. Goldman, “Photobleaching Techniques to Study Mobility and Molecular Dynamics of Proteins in Live Cells: FRAP, iFRAP, and FLIP,” in Live Cell Imaging - A Laboratory Manual (CSHL Press, Cold Spring Harbor, 2005), pp. 101–126.
  10. M. E. van Royen, P. Farla, K. A. Mattern, B. Geverts, J. Trapman, and A. B. Houtsmuller, “Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells,” Methods Mol. Biol. 464, 363–385 (2009). [CrossRef]
  11. N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993). [CrossRef] [PubMed]
  12. N. O. Petersen, R. Rigler, and E. S. Elson, “FCS and spatial correlations on biological surfaces,” in Fluorescence Correlation Spectroscopy - Theory and Applications (Springer, Heidelberg, 2001), pp. 162–184.
  13. D. L. Kolin, S. Costantino, and P. W. Wiseman, “Sampling effects, noise, and photobleaching in temporal image correlation spectroscopy,” Biophys. J. 90(2), 628–639 (2006). [CrossRef]
  14. D. L. Kolin, D. Ronis, and P. W. Wiseman, “k-Space image correlation spectroscopy: a method for accurate transport measurements independent of fluorophore photophysics,” Biophys. J. 91(8), 3061–3075 (2006). [CrossRef] [PubMed]
  15. D. L. Kolin and P. W. Wiseman, “Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells,” Cell Biochem. Biophys. 49(3), 141–164 (2007). [CrossRef] [PubMed]
  16. C. M. Brown, R. B. Dalal, B. Hebert, M. A. Digman, A. R. Horwitz, and E. Gratton, “Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope,” J. Microsc. 229(1), 78–91 (2008). [CrossRef] [PubMed]
  17. M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Measuring fast dynamics in solutions and cells with a laser scanning microscope,” Biophys. J. 89(2), 1317–1327 (2005). [CrossRef] [PubMed]
  18. M. A. Digman and E. Gratton, “Analysis of diffusion and binding in cells using the RICS approach,” Microsc. Res. Tech. 72(4), 323–332 (2009). [CrossRef]
  19. M. A. Digman, P. W. Wiseman, C. Choi, A. R. Horwitz, and E. Gratton, “Stoichiometry of molecular complexes at adhesions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 106(7), 2170–2175 (2009). [CrossRef] [PubMed]
  20. E. Gielen, N. Smisdom, M. Vandeven, B. De Clercq, E. Gratton, M. Digman, J.-M. Rigo, J. Hofkens, Y. Engelborghs, and M. Ameloot, “Measuring Diffusion of Lipid-like Probes in Artificial and Natural Membranes by Raster Image Correlation Spectroscopy (RICS): Use of a Commercial Laser-Scanning Microscope with Analog Detection,” Langmuir (2009).
  21. M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, “Mapping the number of molecules and brightness in the laser scanning microscope,” Biophys. J. 94(6), 2320–2332 (2008). [CrossRef]
  22. V. Vukojević, M. Heidkamp, Y. Ming, B. Johansson, L. Terenius, and R. Rigler, “Quantitative single-molecule imaging by confocal laser scanning microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18176–18181 (2008). [CrossRef] [PubMed]
  23. K. M. Berland, P. T. C. So, Y. Chen, W. W. Mantulin, and E. Gratton, “Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation,” Biophys. J. 71(1), 410–420 (1996). [CrossRef] [PubMed]
  24. D. E. Koppel, F. Morgan, A. E. Cowan, and J. H. Carson, “Scanning concentration correlation spectroscopy using the confocal laser microscope,” Biophys. J. 66(2), 502–507 (1994). [CrossRef] [PubMed]
  25. J. Ries, S. Chiantia, and P. Schwille, “Accurate determination of membrane dynamics with line-scan FCS,” Biophys. J. 96(5), 1999–2008 (2009). [CrossRef] [PubMed]
  26. J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence Correlation Spectroscopy of Triplet States in Solution: A Theoretical and Experimental Study,” J. Phys. Chem. 99(36), 13368–13379 (1995). [CrossRef]
  27. “LFD Workshop 2006 - Laboratory for Fluorescence Dynamics” (2006), http://www.lfd.uci.edu/workshop/2006/ .
  28. M. Wachsmuth, “Method for measuring fluorescence fluctuations in the presence of slow signal fluctuations,” US Patent No. 7,154,602 (2006).
  29. G. S. Harms, L. Cognet, P. H. Lommerse, G. A. Blab, and T. Schmidt, “Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy,” Biophys. J. 80, 2396–2408 (2001). [CrossRef] [PubMed]
  30. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, 1999).
  31. M. Wachsmuth, W. Waldeck, and J. Langowski, “Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy,” J. Mol. Biol. 298(4), 677–689 (2000). [CrossRef] [PubMed]
  32. I. Gregor, D. Patra, and J. Enderlein, “Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation,” ChemPhysChem 6(1), 164–170 (2005). [CrossRef] [PubMed]
  33. P. Dittrich, F. Malvezzi-Campeggi, M. Jahnz, and P. Schwille, “Accessing molecular dynamics in cells by fluorescence correlation spectroscopy,” Biol. Chem. 382(3), 491–494 (2001). [CrossRef] [PubMed]
  34. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77(4), 2251–2265 (1999). [CrossRef] [PubMed]
  35. K. P. Müller, F. Erdel, M. Caudron-Herger, C. Marth, B. D. Fodor, M. Richter, M. Scaranaro, J. Beaudouin, M. Wachsmuth, and K. Rippe, “Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy,” Biophys. J. 97(11), 2876–2885 (2009). [CrossRef] [PubMed]
  36. J. Beaudouin, F. Mora-Bermúdez, T. Klee, N. Daigle, and J. Ellenberg, “Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins,” Biophys. J. 90(6), 1878–1894 (2006). [CrossRef] [PubMed]
  37. C. Pack, K. Saito, M. Tamura, and M. Kinjo, “Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs,” Biophys. J. 91(10), 3921–3936 (2006). [CrossRef] [PubMed]
  38. M. Wachsmuth, M. Caudron-Herger, and K. Rippe, “Genome organization: balancing stability and plasticity,” Biochim. Biophys. Acta 1783(11), 2061–2079 (2008). [CrossRef] [PubMed]
  39. N. Dross, C. Spriet, M. Zwerger, G. Müller, W. Waldeck, J. Langowski, and J. Z. Rappoport, “Mapping eGFP oligomer mobility in living cell nuclei,” PLoS ONE 4(4), e5041–e5041 (2009). [CrossRef] [PubMed]
  40. A. Bancaud, S. Huet, N. Daigle, J. Mozziconacci, J. Beaudouin, and J. Ellenberg, “Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin,” EMBO J. 28(24), 3785–3798 (2009). [CrossRef] [PubMed]
  41. C. M. Roth, P. I. Heinlein, M. Heilemann, and D.-P. Herten, “Imaging diffusion in living cells using time-correlated single-photon counting,” Anal. Chem. 79(19), 7340–7345 (2007). [CrossRef] [PubMed]
  42. G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J. 38(6), 813–828 (2009). [CrossRef] [PubMed]
  43. B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially Resolved Total Internal Reflection Fluorescence Correlation Microscopy Using an Electron Multiplying Charge-Coupled Device Camera,” Analytical Chemistry (2007).
  44. D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96(12), 5050–5059 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited