## Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach |

Optics Express, Vol. 18, Issue 21, pp. 21714-21724 (2010)

http://dx.doi.org/10.1364/OE.18.021714

Acrobat PDF (1225 KB)

### Abstract

Monte Carlo method is applied for simulation of 2D optical coherence tomography (OCT) images of skin-like model. Layer boundaries in skin model feature curved shape which agrees with physiological structure of human skin. The effect of coherence properties of probing radiation on OCT image formation and speckles in the detected OCT signal is considered. The developed model is employed for image simulation both for conventional and polarization dependent time-domain OCT modalities. Simulation of polarized OCT signal is performed using vector approach developed previously for modeling of electromagnetic field transfer in turbid media.

© 2010 OSA

## 1. Introduction

1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science **254**(5035), 1178–1181 (1991). [CrossRef] [PubMed]

6. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple-scattering in optical coherence microscopy,” Appl. Opt. **43**(25), 5699–5707 (1995). [CrossRef]

8. M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. **38**, 486–490 (2008). [CrossRef]

9. R. R. Meier, J.-S. Lee, and D. E. Anderson, “Atmospheric scattering of middle uv radiation from an internal source,” Appl. Opt. **17**(20), 3216–3225 (1978). [CrossRef] [PubMed]

11. E. A. Bucher, “Computer simulation of light pulse propagation for communication through thick clouds,” Appl. Opt. **12**(10), 2391–2400 (1973). [CrossRef] [PubMed]

11. E. A. Bucher, “Computer simulation of light pulse propagation for communication through thick clouds,” Appl. Opt. **12**(10), 2391–2400 (1973). [CrossRef] [PubMed]

12. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express **15**(17), 10649–10665 (2007). [CrossRef] [PubMed]

13. E. Berrocal, I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, “Image transfer through the complex scattering turbid media,” Laser Phys. Lett. **3**(9), 464–468 (2006). [CrossRef]

8. M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. **38**, 486–490 (2008). [CrossRef]

14. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. **44**(9), 2307–2320 (1999). [CrossRef] [PubMed]

19. V. L. Kuzmin and I. V. Meglinski, “Multiple scattering and intensity fluctuations in optical coherence tomography of randomly inhomogeneous media,” J. Exp. Theor. Phys. **105**(2), 285–291 (2007). [CrossRef]

*in vivo*.

## 2. Experimental OCT imaging of skin

1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science **254**(5035), 1178–1181 (1991). [CrossRef] [PubMed]

20. R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. **32**(11), 993–998 (2002). [CrossRef]

21. M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. **2**, 07031 (2007). [CrossRef]

*μ*m, respectively. The examples of typical OCT images of human skin obtained

*in vivo*by conventional (Fig. 1a ) and polarization dependent (Fig. 1b and Fig. 1c) modalities exhibit complex multi-layered tissues structure.

*Stratum Corneum*layer manifested by bright area in non- and co-polarized modes. However, its brightness in the cross-polarization image is significantly smaller because of its small thickness which does not provide sufficient depolarization. Next layer, lower

*Stratum Corneum*, seems relatively dark in all three images, whereas underlying layer epidermis appears bright in the obtained OCT images in non- and co-polarized modes (see Fig. 1a and 1b, correspondingly). High scattering in this layer also results in significant depolarization degree which is evident by high intensity of this layer in the cross-polarization image (see Fig. 1c).

## 3. Numerical simulation

### 3.1 Basic concept of Monte Carlo simulation of OCT signal

9. R. R. Meier, J.-S. Lee, and D. E. Anderson, “Atmospheric scattering of middle uv radiation from an internal source,” Appl. Opt. **17**(20), 3216–3225 (1978). [CrossRef] [PubMed]

12. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express **15**(17), 10649–10665 (2007). [CrossRef] [PubMed]

19. V. L. Kuzmin and I. V. Meglinski, “Multiple scattering and intensity fluctuations in optical coherence tomography of randomly inhomogeneous media,” J. Exp. Theor. Phys. **105**(2), 285–291 (2007). [CrossRef]

*s*between the two successive elastic scattering events is determined by the Poisson probability density function [22]:where

*μ*

_{s}is the scattering coefficient. Note that the parameter

*s*is defined as:

*s*via the probability

*ξ*:This is the key element of MC technique, viz. obtaining photon free path-length that consists of the computer generation of a random number

*ξ*uniformly distributed in the interval [0,1].

**r**from the background value,

*n*,

*θ*is the scattering angle relative to the initial direction

^{7}. The details of the reflection and refraction at the medium boundary and at the interface between layers are given in [24

24. D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. **47**(23), 4271–4285 (2002). [CrossRef] [PubMed]

*z*can be presented as an interference term of optical signals coming from the sample and reference arms [3

3. J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Sel. Top. Quantum Electron. **5**(4), 1205–1215 (1999). [CrossRef]

25. D. Y. Churmakov, V. L. Kuz’min, and I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. **36**(11), 1009–1015 (2006). [CrossRef]

*C*(

*z, l*) is the normalized coherence function and

_{c}*l*is the coherence length of probing radiation [26]:where

_{c}18. M. Y. Kirillin, A. V. Priezzhev, and I. V. Meglinski, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. **36**(3), 247–252 (2006). [CrossRef]

*N*is the number of photons launched,

_{ph}*I*is a constant defined by instrumental properties of the OCT system,

_{0}*W*is the weight of

_{i}*i*-th detected photon with optical pathlength

*L*and 2

_{i}*z*is the optical pathlength in the reference arm. If one neglects “speckle structure” of the OCT-signal defined by cosine item in (8) the result can be presented as a superposition of envelopes of partial detected photon contributions:

### 3.2 Simulation of polarization dependent OCT signal

29. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. **7**(3), 279–290 (2002). [CrossRef] [PubMed]

30. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. **39**(10), 1580–1588 (2000). [CrossRef]

31. M. J. Raković, G. W. Kattawar, M. B. Mehrubeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. **38**(15), 3399–3408 (1999). [CrossRef]

32. D. A. Zimnyakov, Y. P. Sinichkin, P. V. Zakharov, and D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media **11**(4), 395–412 (2001). [CrossRef]

*et al.*proposed a method for discriminating short and long path photons that is based on the relationship between the polarization states of incident and forward scattered light [34

34. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. **31**(30), 6535–6546 (1992). [CrossRef] [PubMed]

*et al.*assumed that for both states of polarization the corresponding intensity can be represented as a product of the intensity of a scalar wave, which does not depend on the polarization state, and a corresponding multiplicative factor (weighting function) describing polarization transfer [35

35. E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France **49**(1), 77–98 (1988). [CrossRef]

36. M. J. Stephen and G. Cwilich, “Rayleigh scattering and weak localization: Effects of polarization,” Phys. Rev. B Condens. Matter **34**(11), 7564–7572 (1986). [CrossRef] [PubMed]

37. F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B Condens. Matter **40**(4), 2383–2406 (1989). [CrossRef] [PubMed]

37. F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B Condens. Matter **40**(4), 2383–2406 (1989). [CrossRef] [PubMed]

38. D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A, Pure Appl. Opt. **2**(3), 200–208 (2000). [CrossRef]

39. A. Dogariu, C. Kutsche, P. Likamwa, G. Boreman, and B. Moudgil, “Time-domain depolarization of waves retroreflected from dense colloidal media,” Opt. Lett. **22**(9), 585–587 (1997). [CrossRef] [PubMed]

*x*direction that enters the medium along positive direction of

*z*axis normal to the interface. By a co-polarized wave we understand a linearly polarized scattered wave with the same orientation of polarization as the incident wave, and a cross-polarized wave is perpendicular to the incident wave direction of polarization [27]. Thus, waves scattered in

*xz*and

*yz*planes define co-polarized and cross-polarized components of the scattered electromagnetic wave, respectively.

*i*-th scattering event into

35. E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France **49**(1), 77–98 (1988). [CrossRef]

*i*-1)

^{th}and

*i*

^{th}scattering events. Note that although the expression (10) is rigorously introduced for the case of Rayleigh scattering it can also be applied as the first approximation in case of Rayleigh-Gans-Debye (RGD) scattering valid for soft scattering particles with the size comparable to or few times larger than the wavelength [23]. Namely, the size

*D*of the particles should obey the relation (

*ε*-1)

_{r}*D*/λ << 1 where (

*ε*-1) is the relative fluctuation of dielectric permittivity between the scatterer (e.g. cell component such as nucleus or mitochondria) and the surrounding medium (e.g. cytoplasm). Typically in biotissues the value of (

_{r}*ε*−1) is less than 0.1 [40] therefore RGD approximation is quite reasonable for the particles with the sizes of units of

_{r}*λ*which are characterized by non-isotropic scattering phase function. Recently it has been demonstrated that the expression (10) can be successfully applied with the use of Heyney-Greenstein phase function [41

41. V. L. Kuzmin and I. V. Meglinski, “Helicity flip of backscattered circularly polarized light,” Proc. SPIE **7573**, 75730Z (2010). [CrossRef]

*i*

^{th}scattering event. The chain

*n*scattering events to the final polarization

**T**(

*n*):

42. P. S. Carney, E. Wolf, and G. S. Agarwal, “Statistical generalizations of the optical cross-section theorem with application to inverse scattering,” J. Opt. Soc. Am. A **14**(12), 3366–3371 (1997). [CrossRef]

36. M. J. Stephen and G. Cwilich, “Rayleigh scattering and weak localization: Effects of polarization,” Phys. Rev. B Condens. Matter **34**(11), 7564–7572 (1986). [CrossRef] [PubMed]

43. V. L. Kuzmin and E. V. Aksenova, “A generalized Milne solution for the correlation effects of multiple light scattering with polarization,” J. Exp. Theor. Phys. **96**(5), 816–831 (2003). [CrossRef]

44. V. L. Kuz’min, V. P. Romanov, and L. A. Zubkov, “Propagation and scattering of light in fluctuating media,” Phys. Rep. **248**(2-5), 71–368 (1994). [CrossRef]

38. D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A, Pure Appl. Opt. **2**(3), 200–208 (2000). [CrossRef]

42. P. S. Carney, E. Wolf, and G. S. Agarwal, “Statistical generalizations of the optical cross-section theorem with application to inverse scattering,” J. Opt. Soc. Am. A **14**(12), 3366–3371 (1997). [CrossRef]

43. V. L. Kuzmin and E. V. Aksenova, “A generalized Milne solution for the correlation effects of multiple light scattering with polarization,” J. Exp. Theor. Phys. **96**(5), 816–831 (2003). [CrossRef]

*n*is the number of scattering events for

_{i}*i*-th detected photon.

## 4. Modeling of OCT images of skin

45. P. K. Milsom, “A ray-optic, Monte Carlo, description of a Gaussian beam waist – applied to reverse saturable absorption,” Appl. Phys. B **70**(4), 593–599 (2000). [CrossRef]

^{6}photons are employed; 50 A-scans are obtained to construct each 2D OCT image.

*Stratum Corneum*layer which can be separated into two parts: upper thin layer consisting of chaotically oriented dry cells and lower thick layer consisting of ordered cells (Fig. 2 ). The underlying skin layers are represented by epidermis, dermis with upper plexus, dermis and dermis with lower plexus [8

8. M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. **38**, 486–490 (2008). [CrossRef]

**38**, 486–490 (2008). [CrossRef]

## 5. Results and discussion

*l*

_{c}= 5 up to 30

*μ*m at the wavelength λ = 910 nm that is typical for super-luminescence diodes employed in OCT setups. All figures are shown in the same color scale, so the increase in coherence length results in increase of corresponding average signal intensity. At the same time the axial resolution of the images decreases with the increase of coherence length thus yielding blurring of the image. The obtained images qualitatively depict the essential features of the experimental images (Fig. 1a) exhibiting bright epidermis layer below dark lower

*Stratum Corneum*layer. Such similarity indicates the adequacy of the chosen multilayer skin model. The bright spots at the extrema of the sinusoidal boundary shape originate from strong back-reflection at the sections of layer boundaries normal to the incident probing beam direction.

*x*= 0

*μm*) for the multilayer skin model are presented in Fig. 5a . At small probing depth the co-polarization signal is extremely close to the non-polarized one while their discrepancy grows with the depth which is the evidence of depolarization of the probing radiation.

## 6. Conclusion

*in vivo*.

*etc*. Beside those, the phenomena of optical anisotropy of tissues such as birefringence and optical activity that are of a high interest in framework of modern biomedical optical diagnostics and can be introduced in the proposed algorithm with easier, e.g. similar to the approach presented in [46

46. V. L. Kuz’min and I. V. Meglinski, “Anomalous polarization effects during light scattering in random media,” J. Exp. Theor. Phys. **110**(5), 742–753 (2010). [CrossRef]

## Acknowledgements

## References and links

1. | D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science |

2. | A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. |

3. | J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Sel. Top. Quantum Electron. |

4. | B. E. Bouma, and G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York, 2002). |

5. | V. V. Tuchin, Handbook of Coherent Domain Optical Methods: Biomedical Diagnostics Environment and Material Science (Kluwer Academic, Boston, 2004). |

6. | M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple-scattering in optical coherence microscopy,” Appl. Opt. |

7. | I. V. Meglinski, “Modeling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highly scattering and absorbing media by the Monte Carlo technique,” Quantum Electron. |

8. | M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. |

9. | R. R. Meier, J.-S. Lee, and D. E. Anderson, “Atmospheric scattering of middle uv radiation from an internal source,” Appl. Opt. |

10. | C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, and C. Roze, “Comparison of iterative and monte carlo methods for calculation of the Aureole about a point source in the earth’s atmosphere,” Appl. Opt. |

11. | E. A. Bucher, “Computer simulation of light pulse propagation for communication through thick clouds,” Appl. Opt. |

12. | E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express |

13. | E. Berrocal, I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, “Image transfer through the complex scattering turbid media,” Laser Phys. Lett. |

14. | G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. |

15. | M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and |

16. | B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A |

17. | B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography,” J. Opt. Soc. Am. A |

18. | M. Y. Kirillin, A. V. Priezzhev, and I. V. Meglinski, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. |

19. | V. L. Kuzmin and I. V. Meglinski, “Multiple scattering and intensity fluctuations in optical coherence tomography of randomly inhomogeneous media,” J. Exp. Theor. Phys. |

20. | R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. |

21. | M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. |

22. | I.M. Sobol’, The Monte Carlo Method (The University of Chicago Press, Chicago, 1974). |

23. | A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978). |

24. | D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. |

25. | D. Y. Churmakov, V. L. Kuz’min, and I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. |

26. | J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985). |

27. | C. Brosseau, Fundamentals of Polarized Light: a Statistical Optics Approach (New York: John Wiley & Sons, 1998). |

28. | C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (New York: Wiley, 1983) |

29. | X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. |

30. | S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. |

31. | M. J. Raković, G. W. Kattawar, M. B. Mehrubeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. |

32. | D. A. Zimnyakov, Y. P. Sinichkin, P. V. Zakharov, and D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media |

33. | S. V. Gangnus, S. J. Matcher, and I. V. Meglinski, “Monte Carlo modeling of polarized light propagation in biological tissues,” Laser Phys. |

34. | J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. |

35. | E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France |

36. | M. J. Stephen and G. Cwilich, “Rayleigh scattering and weak localization: Effects of polarization,” Phys. Rev. B Condens. Matter |

37. | F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B Condens. Matter |

38. | D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A, Pure Appl. Opt. |

39. | A. Dogariu, C. Kutsche, P. Likamwa, G. Boreman, and B. Moudgil, “Time-domain depolarization of waves retroreflected from dense colloidal media,” Opt. Lett. |

40. | V.V. Tuchin, |

41. | V. L. Kuzmin and I. V. Meglinski, “Helicity flip of backscattered circularly polarized light,” Proc. SPIE |

42. | P. S. Carney, E. Wolf, and G. S. Agarwal, “Statistical generalizations of the optical cross-section theorem with application to inverse scattering,” J. Opt. Soc. Am. A |

43. | V. L. Kuzmin and E. V. Aksenova, “A generalized Milne solution for the correlation effects of multiple light scattering with polarization,” J. Exp. Theor. Phys. |

44. | V. L. Kuz’min, V. P. Romanov, and L. A. Zubkov, “Propagation and scattering of light in fluctuating media,” Phys. Rep. |

45. | P. K. Milsom, “A ray-optic, Monte Carlo, description of a Gaussian beam waist – applied to reverse saturable absorption,” Appl. Phys. B |

46. | V. L. Kuz’min and I. V. Meglinski, “Anomalous polarization effects during light scattering in random media,” J. Exp. Theor. Phys. |

**OCIS Codes**

(110.4500) Imaging systems : Optical coherence tomography

(170.3660) Medical optics and biotechnology : Light propagation in tissues

(170.5280) Medical optics and biotechnology : Photon migration

(290.5855) Scattering : Scattering, polarization

**ToC Category:**

Medical Optics and Biotechnology

**History**

Original Manuscript: August 12, 2010

Revised Manuscript: September 8, 2010

Manuscript Accepted: September 13, 2010

Published: September 29, 2010

**Virtual Issues**

Vol. 5, Iss. 14 *Virtual Journal for Biomedical Optics*

**Citation**

Mikhail Kirillin, Igor Meglinski, Vladimir Kuzmin, Ekaterina Sergeeva, and Risto Myllylä, "Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach," Opt. Express **18**, 21714-21724 (2010)

http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-21-21714

Sort: Year | Journal | Reset

### References

- D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. D. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
- A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
- J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999). [CrossRef]
- B. E. Bouma, and G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York, 2002).
- V. V. Tuchin, Handbook of Coherent Domain Optical Methods: Biomedical Diagnostics Environment and Material Science (Kluwer Academic, Boston, 2004).
- M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple-scattering in optical coherence microscopy,” Appl. Opt. 43(25), 5699–5707 (1995). [CrossRef]
- I. V. Meglinski, “Modeling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highly scattering and absorbing media by the Monte Carlo technique,” Quantum Electron. 31, 1101–1107 (2001).
- M. Yu. Kirillin, A. V. Priezzhev, and R. Myllylä, “Role of multiple scattering in formation of OCT skin images,” Quantum Electron. 38, 486–490 (2008). [CrossRef]
- R. R. Meier, J.-S. Lee, and D. E. Anderson, “Atmospheric scattering of middle uv radiation from an internal source,” Appl. Opt. 17(20), 3216–3225 (1978). [CrossRef] [PubMed]
- C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, and C. Roze, “Comparison of iterative and monte carlo methods for calculation of the Aureole about a point source in the earth’s atmosphere,” Appl. Opt. 38(30), 6237–6246 (1999). [CrossRef]
- E. A. Bucher, “Computer simulation of light pulse propagation for communication through thick clouds,” Appl. Opt. 12(10), 2391–2400 (1973). [CrossRef] [PubMed]
- E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007). [CrossRef] [PubMed]
- E. Berrocal, I. V. Meglinski, D. A. Greenhalgh, and M. A. Linne, “Image transfer through the complex scattering turbid media,” Laser Phys. Lett. 3(9), 464–468 (2006). [CrossRef]
- G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999). [CrossRef] [PubMed]
- M. Yu. Kirillin, M. V. Shirmanova, M. A. Sirotkina, M. L. Bugrova, B. N. Khlebtsov, and E. V. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for OCT imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14, 021017 (2009). [CrossRef] [PubMed]
- B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005). [CrossRef]
- B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography,” J. Opt. Soc. Am. A 22(7), 1380–1388 (2005). [CrossRef]
- M. Y. Kirillin, A. V. Priezzhev, and I. V. Meglinski, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. 36(3), 247–252 (2006). [CrossRef]
- V. L. Kuzmin and I. V. Meglinski, “Multiple scattering and intensity fluctuations in optical coherence tomography of randomly inhomogeneous media,” J. Exp. Theor. Phys. 105(2), 285–291 (2007). [CrossRef]
- R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, “Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes,” Quantum Electron. 32(11), 993–998 (2002). [CrossRef]
- M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study,” J. Europ. Opt. Soc. Rap. Public. 2, 07031 (2007). [CrossRef]
- I.M. Sobol’, The Monte Carlo Method (The University of Chicago Press, Chicago, 1974).
- A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
- D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47(23), 4271–4285 (2002). [CrossRef] [PubMed]
- D. Y. Churmakov, V. L. Kuz’min, and I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36(11), 1009–1015 (2006). [CrossRef]
- J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
- C. Brosseau, Fundamentals of Polarized Light: a Statistical Optics Approach (New York: John Wiley & Sons, 1998).
- C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (New York: Wiley, 1983)
- X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002). [CrossRef] [PubMed]
- S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000). [CrossRef]
- M. J. Raković, G. W. Kattawar, M. B. Mehrubeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38(15), 3399–3408 (1999). [CrossRef]
- D. A. Zimnyakov, Y. P. Sinichkin, P. V. Zakharov, and D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11(4), 395–412 (2001). [CrossRef]
- S. V. Gangnus, S. J. Matcher, and I. V. Meglinski, “Monte Carlo modeling of polarized light propagation in biological tissues,” Laser Phys. 14, 886–891 (2004).
- J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31(30), 6535–6546 (1992). [CrossRef] [PubMed]
- E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-Study of the Coherent Backscattering of Light by Disordered Media,” J. Phys. France 49(1), 77–98 (1988). [CrossRef]
- M. J. Stephen and G. Cwilich, “Rayleigh scattering and weak localization: Effects of polarization,” Phys. Rev. B Condens. Matter 34(11), 7564–7572 (1986). [CrossRef] [PubMed]
- F. C. MacKintosh and S. John, “Diffusing-wave spectroscopy and multiple scattering of light in correlated random media,” Phys. Rev. B Condens. Matter 40(4), 2383–2406 (1989). [CrossRef] [PubMed]
- D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A, Pure Appl. Opt. 2(3), 200–208 (2000). [CrossRef]
- A. Dogariu, C. Kutsche, P. Likamwa, G. Boreman, and B. Moudgil, “Time-domain depolarization of waves retroreflected from dense colloidal media,” Opt. Lett. 22(9), 585–587 (1997). [CrossRef] [PubMed]
- V.V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE Press, Bellingham, 2000).
- V. L. Kuzmin and I. V. Meglinski, “Helicity flip of backscattered circularly polarized light,” Proc. SPIE 7573, 75730Z (2010). [CrossRef]
- P. S. Carney, E. Wolf, and G. S. Agarwal, “Statistical generalizations of the optical cross-section theorem with application to inverse scattering,” J. Opt. Soc. Am. A 14(12), 3366–3371 (1997). [CrossRef]
- V. L. Kuzmin and E. V. Aksenova, “A generalized Milne solution for the correlation effects of multiple light scattering with polarization,” J. Exp. Theor. Phys. 96(5), 816–831 (2003). [CrossRef]
- V. L. Kuz’min, V. P. Romanov, and L. A. Zubkov, “Propagation and scattering of light in fluctuating media,” Phys. Rep. 248(2-5), 71–368 (1994). [CrossRef]
- P. K. Milsom, “A ray-optic, Monte Carlo, description of a Gaussian beam waist – applied to reverse saturable absorption,” Appl. Phys. B 70(4), 593–599 (2000). [CrossRef]
- V. L. Kuz’min and I. V. Meglinski, “Anomalous polarization effects during light scattering in random media,” J. Exp. Theor. Phys. 110(5), 742–753 (2010). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.