## Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays

Optics Express, Vol. 18, Issue 5, pp. 4526-4537 (2010)

http://dx.doi.org/10.1364/OE.18.004526

Acrobat PDF (2008 KB)

### Abstract

It is generally accepted that the lifetimes of the localized plasmonic excitations are inherently controlled by the type of the metals and the shape of the nanoparticles. However, extended plasmonic lifetimes and enhanced near-fields in nanoparticle arrays can be achieved as a result of collective excitation of plasmons. In this article, we demonstrate significantly longer plasmon lifetimes and stronger near-field enhancements by embedding the nanoantenna arrays into the substrate. Our approach offers a more homogeneous dielectric background allowing stronger diffractive couplings among plasmonic particles leading to strong suppression of the radiative damping. We observe near-field enhancements well beyond than those achievable with isolated nanoparticles. Enhanced fields obtained in these structures could be attractive for biosensing and non-linear photonics applications.

© 2010 OSA

## 1. Introduction

1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science **311**(5758), 189–193 (2006). [CrossRef] [PubMed]

2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics **1**(11), 641–648 (2007). [CrossRef]

3. M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B **46**(5), 2821–2830 (1992). [CrossRef]

4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. **78**(9), 1667–1670 (1997). [CrossRef]

5. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. **106**(46), 19227–19232 (2009). [CrossRef] [PubMed]

6. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. **101**(15), 157403 (2008). [CrossRef] [PubMed]

7. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. **82**(20), 4014–4017 (1999). [CrossRef]

8. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. **8**(12), 4391–4397 (2008). [CrossRef]

9. A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. **95**(5), 051105 (2009). [CrossRef]

11. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. **54**(1-2), 3–15 (1999). [CrossRef]

12. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express **16**(2), 1020–1028 (2008). [CrossRef] [PubMed]

13. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B **110**(39), 19220–19225 (2006). [CrossRef] [PubMed]

15. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. **88**(7), 077402 (2002). [CrossRef] [PubMed]

5. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. **106**(46), 19227–19232 (2009). [CrossRef] [PubMed]

16. S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotech. **17**(11), 2813–2820 (2006). [CrossRef]

22. Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE **5927**, 59271D (2005). [CrossRef]

5. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. **106**(46), 19227–19232 (2009). [CrossRef] [PubMed]

23. C. S. T. Microwave Studio, Computer Simulation Technology, Darmstadt, Germany, http://www.cst.com.

## 2. Fundamentals of collective plasmonics

16. S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotech. **17**(11), 2813–2820 (2006). [CrossRef]

18. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. **38**(7), L115–L121 (2005). [CrossRef]

16. S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotech. **17**(11), 2813–2820 (2006). [CrossRef]

18. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. **38**(7), L115–L121 (2005). [CrossRef]

21. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. **101**(8), 087403 (2008). [CrossRef] [PubMed]

**C**

*is the dipolar interaction matrix without the phase term [24*

_{ij}24. The electric field due to point dipole are given by *r* dependence and corresponds to the far-field radiation. The second terms are relevant for short range interactions. In order to emphasize the importance of the phase term in the collective scattering process the interaction term is written as

*i*and

*j*label the

*i*

_{th}and

*j*

_{th}particles,

*r*is the distance between them, and

_{ij}*N*is the total number of particles. The sum in Eq. (1) strongly depends on the phase delay experienced by the retarded dipolar interactions among particles. For a periodically arranged nanoparticle array, the scattered fields add in phase at a specific wavelength when

*kr*= 2

_{ij}*πm*, where

*m*is an integer. This corresponds to the appearance of a new grating order. For wavelengths shorter/longer than this transition wavelength, the grating order is radiative/evanescent. Interesting physical phenomena leading to the narrowing of the plasmonic resonances and the enhanced near-fields are observed around the transition wavelength. A quantitative understanding of the phenomena can be developed for an infinite chain of identical nanoparticles excited by normally incident light. In this case, dipolar moments of the constituent particles are the same

*S*is the retarded dipole sum defined in the parentheses in Eq. (2). Accordingly, an effective polarizability for nanoparticles can be defined as:such that

*S*, which is only a function of geometrical parameters. A maximum both in the imaginary part and modulus of the particle’s complex polarizability, thus a peak in extinction spectrum corresponding to the array resonance, is expected when the real part of the denominator

*α*, and the retarded dipole sum,

_{p}*S*, are shown with respect to the wavelength of the incident light, which is normally incident and polarized perpendicular to the chain axis (along the long axis of the nanorods). The particles are modeled as gold ellipsoids, with the dielectric function computed from a Lorentz-Drude model [25

25. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. **37**(22), 5271–5283 (1998). [CrossRef]

*α*is computed using the modified long wavelength approximation (MLWA) [27

_{p}27. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. **8**(11), 581–583 (1983). [CrossRef] [PubMed]

*S*involves evaluating an infinite summation. This was done numerically with the sum terminated at

*N =*400 particles.

*S*, shows a more complex behavior. For large particle separations,

**C**

_{ij}is dominated by the far-field term which is a real positive number. Hence, for a periodic chain, the real part of the lattice sum

*S*(red curve) diverges at the diffraction condition (

*kr*= 2

_{ij}*πm*) [16

**17**(11), 2813–2820 (2006). [CrossRef]

18. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. **38**(7), L115–L121 (2005). [CrossRef]

20. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. **101**(14), 143902 (2008). [CrossRef] [PubMed]

*S*) [blue curve in Fig. 1(a)] exhibits a rapid sign change around this grating transition wavelength. Imaginary part of the lattice sum, Im(

*S*), is positive (negative) when the grating order is radiative (evanescent) resulting in increased (decreased) radiative damping. The sudden appearance of the new grating order causes a dramatic increase in the radiated power from the array, which is closely associated with the Wood anomalies and Rayleigh’s explanation [29

29. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character **79**(532), 399–416 (1907). [CrossRef]

*S*is negative at the array resonance wavelength [Fig. 1(a)] and partially cancels the imaginary parts of

19. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. **84**(20), 4721–4724 (2000). [CrossRef] [PubMed]

**106**(46), 19227–19232 (2009). [CrossRef] [PubMed]

20. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. **101**(14), 143902 (2008). [CrossRef] [PubMed]

30. X. M. Bendaña and F. J. Garcia de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express **17**(21), 18826–18835 (2009). [CrossRef]

**106**(46), 19227–19232 (2009). [CrossRef] [PubMed]

19. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. **84**(20), 4721–4724 (2000). [CrossRef] [PubMed]

20. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. **101**(14), 143902 (2008). [CrossRef] [PubMed]

## 3. Results

### 3.1 Sample fabrication and measurement

^{−1}) using a Mercury Cadmium Telluride (MCT) detector. Polarized light is incident on the particle array from the substrate side and collected with 0.4 NA, 15x reflection optics objectives. The fabrication method and the experimental conclusions that we present here, (implemented in mid-infrared spectral regime) can be readily extended to visible and near-infrared frequencies by using an appropriate etching processes on a desired substrate. Our fabrication procedure results in air holes above the embedded particles. As we show in section 3.4 using FDTD analysis, the effect of the air holes is not significant. In fact, near-field distribution of the embedded rods is found to be similar to that of a particle in a fully homogeneous background.

### 3.2 Individual particle resonances

31. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. **94**(7), 4632–4642 (2003). [CrossRef]

33. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. **98**(26), 266802 (2007). [CrossRef] [PubMed]

*L*is the rod length,

*n*is the refractive index of the dielectric background and

_{eff}*m*is an integer corresponding to the order of the plasmonic standing wave pattern on the surface of the rod. C is a fitting parameter due to the finite width of the nanorods, which is

*C*≈4

*Rn*

_{eff}/m for a cylindrical rod with cross sectional radius

*R*and hemispherical ends [32

32. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. **95**(20), 201101 (2009). [CrossRef]

33. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. **98**(26), 266802 (2007). [CrossRef] [PubMed]

**106**(46), 19227–19232 (2009). [CrossRef] [PubMed]

34. A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. **93**(8), 081104 (2008). [CrossRef]

35. R. Adato, *et al*., “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays – Supporting information,” http://www.pnas.org/content/106/46/19227/suppl/DCSupplemental

35. R. Adato, *et al*., “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays – Supporting information,” http://www.pnas.org/content/106/46/19227/suppl/DCSupplemental

36. B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. **34**(4), 401–403 (2009). [CrossRef] [PubMed]

*L*, was the only parameter of the particle geometry varied in the experiments. The linear dependence of the resonant wavelength on the rod length is clearly evident in our experimental data for

*m*= 1 mode, a close fit to the dipolar antenna behavior using Eq. (4) is observed for an effective refractive index of

*n*

_{eff}= 3.11 (dashed black curve). Similarly, for the

*m*= 3 mode, fitting of the experimentally observed resonance wavelengths to the dipolar antenna formula resulted in

*n*

_{eff}= 3.09 (dashed blue curve).

*m =*1 order resonance is illustrated. Resonance wavelengths are shown for varying rod lengths and compared for on-substrate and 200 nm deep embedded rods. The resonant wavelengths for the embedded rods are strongly red-shifted in comparison with those deposited directly on the Si substrate. In addition, they deviate from those expected for an ideal half-wave dipole antenna in a Si dielectric background [Eq. (4) with

*C*= 0 indicated by green dashed line].To confirm this observation, we have performed Finite Element Method (FEM) simulations (black stars). Experimentally observed peak positions are in very good agreement with our FEM calculations. A linear fit to the FEM data using Eq. (4) results in values of 3.51 and 1.86 μm for

*n*

_{eff}and

*C,*respectively. The constant term in the fit,

*C*implies a rod with 265 nm diameter cross section, which is in close agreement with the actual width, 300 nm, of the rectangular rods. This indicates that finite width of the particle is not negligible for embedded nanorods and results in red-shifting.

### 3.3 Collective resonances in embedded periodic arrays

*L*= 800 nm). Appearance of the higher grating orders results in a sudden sign change and a sharp maximum in the imaginary and the real parts of the lattice sum

*S*, respectively [Fig. 5(a)]. As shown in Fig. 5(b), dips in extinction efficiencies are observed at these grating transition wavelengths

*p*is the array periodicity,

*n*is the index of silicon/air, and

_{Si/Air}*(i,j)*is the two-dimensional grating diffraction order. In Fig. 5(c), experimentally obtained resonance wavelengths are plotted for varying array periodicities for embedded (red points) and on-substrate (blue points) arrays. For embedded arrays, the spectral locations of the resonances are controlled by the array periodicity and closely follow the analytically derived grating transition wavelengths (dashed lines) corresponding to Si-(0,1), Si-(1,1) and Si-(0,2) grating orders. Slight deviation from the analytical model is likely due to the finite NA (0.4) of the IR-objective resulting in a beam spread.

*S*is a maximum (as discussed in section 1). Such a feature is not observed in extinction spectra obtained from the nanorod arrays directly fabricated on the silicon substrates.

### 3.4 Enhanced near-field intensities with collective plasmonics

**106**(46), 19227–19232 (2009). [CrossRef] [PubMed]

**101**(14), 143902 (2008). [CrossRef] [PubMed]

*λ*= 7.81 µm (5.68 µm) for the embedded (on-substrate) arrays for the array with the periodicity of 2.2 µm (1.6 µm). The differences in resonance wavelengths of the embedded and on-substrate arrays are due to the differences in effective refractive indices. In agreement with our experimental observations (Fig. 4), narrowing of the resonance linewidths is much more pronounced in embedded arrays with respect to on-substrate ones.

## 4. Conclusions

## Acknowledgments

## References and links

1. | E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science |

2. | S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics |

3. | M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B |

4. | K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. |

5. | R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. |

6. | F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. |

7. | E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. |

8. | V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. |

9. | A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. |

10. | A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express |

11. | J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. |

12. | I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express |

13. | K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B |

14. | F. Wang and Y. R. Shen, “General propeties of local plasmons in metal nanostructures,” Phys. Rev. Lett. |

15. | C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. |

16. | S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotech. |

17. | G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Efficient suppression of radiation damping in resonant retardation-based plasmonic structures,” Phys. Rev. B |

18. | V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. |

19. | B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. |

20. | B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. |

21. | V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. |

22. | Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE |

23. | C. S. T. Microwave Studio, Computer Simulation Technology, Darmstadt, Germany, http://www.cst.com. |

24. | The electric field due to point dipole are given by |

25. | A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. |

26. | E. D. Palik, ed., |

27. | M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. |

28. | T. Jensen, L. Kelly, A. Lazarides and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. |

29. | L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character |

30. | X. M. Bendaña and F. J. Garcia de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express |

31. | K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. |

32. | E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. |

33. | L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. |

34. | A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. |

35. | R. Adato, |

36. | B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. |

37. | T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. |

**OCIS Codes**

(240.6680) Optics at surfaces : Surface plasmons

(260.3910) Physical optics : Metal optics

(250.5403) Optoelectronics : Plasmonics

**ToC Category:**

Optics at Surfaces

**History**

Original Manuscript: December 8, 2009

Revised Manuscript: January 19, 2010

Manuscript Accepted: February 1, 2010

Published: February 19, 2010

**Virtual Issues**

Vol. 5, Iss. 6 *Virtual Journal for Biomedical Optics*

**Citation**

Ronen Adato, Ahmet Ali Yanik, Chih-Hui Wu, Gennady Shvets, and Hatice Altug, "Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays," Opt. Express **18**, 4526-4537 (2010)

http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-5-4526

Sort: Year | Journal | Reset

### References

- E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
- S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
- M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B 46(5), 2821–2830 (1992). [CrossRef]
- K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
- R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009). [CrossRef] [PubMed]
- F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008). [CrossRef] [PubMed]
- E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999). [CrossRef]
- V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef]
- A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009). [CrossRef]
- A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009). [CrossRef] [PubMed]
- J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
- I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008). [CrossRef] [PubMed]
- K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006). [CrossRef] [PubMed]
- F. Wang and Y. R. Shen, “General propeties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006). [CrossRef] [PubMed]
- C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [CrossRef] [PubMed]
- S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotech. 17(11), 2813–2820 (2006). [CrossRef]
- G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Efficient suppression of radiation damping in resonant retardation-based plasmonic structures,” Phys. Rev. B 79(11), 113410 (2009). [CrossRef]
- V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. 38(7), L115–L121 (2005). [CrossRef]
- B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000). [CrossRef] [PubMed]
- B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008). [CrossRef] [PubMed]
- V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008). [CrossRef] [PubMed]
- Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D (2005). [CrossRef]
- C. S. T. Microwave Studio, Computer Simulation Technology, Darmstadt, Germany, http://www.cst.com .
- The electric field due to point dipole are given by Aij⋅pj=k2exp(ikrij){(rij×pj)×rij/rij3+(1−ikrij)[3rij(rij⋅pj)−rij2pj]/rij5}. The first term in the brackets has 1/r dependence and corresponds to the far-field radiation. The second terms are relevant for short range interactions. In order to emphasize the importance of the phase term in the collective scattering process the interaction term is written as exp(ikrij)Cij⋅pj=Aij⋅pj in the text.
- A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
- E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, Orlando, Fla., 1985).
- M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8(11), 581–583 (1983). [CrossRef] [PubMed]
- T. Jensen, L. Kelly, A. Lazarides and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10 (1999).
- L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907). [CrossRef]
- X. M. Bendaña and F. J. Garcia de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express 17(21), 18826–18835 (2009). [CrossRef]
- K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003). [CrossRef]
- E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009). [CrossRef]
- L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
- A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008). [CrossRef]
- R. Adato, et al., “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays – Supporting information,” http://www.pnas.org/content/106/46/19227/suppl/DCSupplemental
- B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34(4), 401–403 (2009). [CrossRef] [PubMed]
- T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.