OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013
« Show journal navigation

Two dimensional interferometric optical trapping of multiple particles and Escherichia coli bacterial cells using a lensed multicore fiber

Ashleigh L. Barron, Ajoy K. Kar, Thomas J. Aspray, Andrew J. Waddie, Mohammad R. Taghizadeh, and Henry T. Bookey  »View Author Affiliations


Optics Express, Vol. 21, Issue 11, pp. 13199-13207 (2013)
http://dx.doi.org/10.1364/OE.21.013199


View Full Text Article

Acrobat PDF (1725 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two dimensional interferometric trapping of multiple microspheres and Escherichia coli has been demonstrated using a multicore fiber lensed with an electric arc fusion splicer. Light was coupled evenly into all four cores using a diffractive optical element. The visibility of the fringes and also the appearance of the lattice can be altered by rotating a half wave-plate. As a result the particles can be manipulated from one dimensional trapping to two dimensional trapping or a variety of different two dimensional arrangements. The ability to align bacterial populations has potential application for quorum sensing, floc and biofilm and, metabolic co-operation studies.

© 2013 OSA

1. Introduction

2. Fabrication and sample material preparation

2.1 Lensed fiber fabrication

2.2 Diffractive optical element fabrication

The fan-out operation required to launch the incident light into the four core fiber is performed by means of a scalar domain diffractive optical element [13

13. J. S. Liu, A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “Comparison of simulated quenching algorithms for design of diffractive optical elements,” Appl. Opt. 47(6), 807–816 (2008). [CrossRef] [PubMed]

]. This class of phase-only component, designed using either a closed-form solution to the Fraunhofer diffraction integral (for small number of fan-out orders) or one of the modified Gerchberg-Saxton phase retrieval algorithms (for large numbers of orders) [13

13. J. S. Liu, A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “Comparison of simulated quenching algorithms for design of diffractive optical elements,” Appl. Opt. 47(6), 807–816 (2008). [CrossRef] [PubMed]

], can produce arbitrary distributions of diffraction orders precisely matched to the fiber core geometry. Figures 2(a)
Fig. 2 (a) Phase profile of 2-level 2x2 fan-out element with lower intensity zeroth order. Black represents 0 relative phase delay and white represents π relative phase delay, and (b) Simulated output from 2x2 fan-out DOE with completely suppressed zeroth order.
and 2(b) show an example of a 2x2 fan-out DOE with zeroth order intensity to facilitate alignment of the DOE to the multicore fiber [19

19. A. J. Caley, M. Braun, A. J. Waddie, and M. R. Taghizadeh, “Analysis of multimask fabrication errors for diffractive optical elements,” Appl. Opt. 46, 2180–2188 (2007). [CrossRef] [PubMed]

].

2.3 Bacterial cell cultures

Escherichia coli K-12 CC118/λpir (pSM1880) cells were grown as one or two day batch cultures in liquid Luria-Bertani medium (tryptone, 10 g l−1; yeast extract 5 g l−1; NaCl 4 g l−1) at 37 °C. Cells were either used directly or diluted 1:1 (v:v) with sterile 0.85% (w/v) NaCl after mounting in purpose made glass cover slip chambers. The E. coli K-12 CC118/λpir strain was chosen due to the fact that it contains the high copy number plasmid pSM1880 carrying the green fluorescent protein (gfp) gene under a constitutively expressing PA1-04/03 promoter enabling the option for fluorescence based imaging.

2.4 Microspheres

2 µm polystyrene microspheres (Polysciences: Polybead® Microspheres) with a refractive index of 1.59 at 589nm were used in the experiments. A concentration a tenth of the bulk sample was used, diluting with distilled water, equating to a suspension density 5.68 x 108 microspheres/ml.

3. Experimental results

The experimental set up is shown in Fig. 3
Fig. 3 Experimental set up.
. An Nd:YLF laser source (Elforlight: model L 500-1047) was used which has a maximum output power of 800 mW at 1047 nm, this wavelength is longer than the fibers specified cut-off wavelength of 1 µm. A custom made DOE as described in Section 2.2 was used to couple light into all four cores of the MCF. The DOE splits the incoming beam of light evenly into four beamlets of the same arrangement and separation as the cores of the MCF at the focus of the coupling lens. The DOE was placed at the back focal plane of an x10, 0.16NA aspheric lens.

The curvature of the end of the fiber refracts the output from the four cores to produce a crossing point in the far field, approximately 250 μm from the end of the fiber in air. At the crossing point high contrast interference fringes are produced in a lattice pattern as shown in Fig. 4(a)
Fig. 4 (a) Interference lattice at the crossing point of the output of the 4 cores, and (b) 2 µm microspheres trapped in the high intensity regions of the lattice.
. The fringe spacing in air is ~2.75 µm. The half wave-plate can be used to improve the visibility of the fringes.

A solution of microspheres were held between two, 100 µm thick, cover slips and kept in place using a vinyl spacer of 80 µm thickness, between them, as shown in Fig. 3. The fiber was positioned in air outside the cover slips and an imaging system was positioned at the other side. A x100, 0.7NA Mitutoyo, infinity corrected, long working distance lens was used for imaging with at Thorlabs CCD camera (1280 x 1024 pixel resolution). The microspheres were shown to align in the areas of high intensity in the lattice fringe pattern with one particle trapped per fringe. They are held in a two dimensional array, spaced evenly across the lattice pattern as shown in Fig. 4(b). The microspheres are trapped in 2-D along x and y on the plane of the coverslip and are also pushed onto the back coverslip in the z-direction.

The interferences fringes produce intensity gradients across the crossing point creating peaks of high intensity, highest in the central region, where particles can be trapped as can be seen in Figs. 5(a)
Fig. 5 (a) Normalized intensity plot of the overlap region of the four core fiber, and (b) BeamPROP simulation of the normalized intensity plot of the overlap region of the four core fiber.
and 5(b). Figure 5(a) shows the normalized intensity plot of the crossing point of the lensed MCF, here the lattice spacing is 2.75 µm, approximately 250 µm away from the end of the fiber. In comparison, Fig. 5(b) shows simulated results produced using a BeamPROP model as described elsewhere [12

12. A. L. Barron, A. K. Kar, and H. T. Bookey, “Dual-beam interference from a lensed multicore fiber and its application to optical trapping,” Opt. Express 20(21), 23156–23161 (2012). [CrossRef] [PubMed]

]. The lens was estimated to be spherical as we are unable to determine the exact lensing effect on the cores. We found that the lattice spacing is 2.69 µm, at a crossing point 235 µm from the end of the fiber. These results are in good agreement with our experimental results.

By rotating the half wave-plate the appearance of the interference fringes can be varied as shown in Figs. 6(a), 6(c), 6(e) and 6(g). The patterns repeat every 90° turn of the wave-plate, each high visibility lattice pattern is positioned 90° apart with patterns that look like one dimensional fringe patterns or inverse lattice patterns spaced between. Linearly polarized light is launched into the MCF, however as the fiber is not polarization maintaining the fiber itself adds a polarization component to the output image. This can be seen whilst viewing the output image of the 2-D lattice pattern through a polarizer. The visibility of the lattice pattern is improved when only the linear polarization component contributing to this pattern is let through as shown in Fig. 6(b). When the polarizer is rotated the image is not completely distinguished as what would happen if the image was completely linear polarization, resulting in the component from the MCF being visible. For each image taken at 22.5° interval of the half wave-plate an image was also taken through a polarizer, these are shown in Figs. 6(b), 6(d), 6(f) and 6(h) beside the image not taken through the polarizer. Figure 6(d) gives the appearance of a 1-D fringe pattern.

The wave-plate can be used to change the MCF output from 1-D trapping fringes to a 2-D trapping lattice as shown in Figs. 7(a)
Fig. 7 (a)-(f), Single frame excerpts from the video recording showing 2 µm microspheres moving from a 1-D fringe pattern (a) and (b), to a 2-D lattice pattern by rotating the half wave-plate to achieve high visibility of the 2-D fringe lattice (c). The corresponding time in the video is included along with the time either before or after the wave-plate is rotated. The microspheres can be seen to move from trapping along the fringes in the 1-D case to trapping in the regions of high intensity in the 2-D case (Media 1).
-7(f) and Media 1. In Media 1 the wave-plate is initially at a position to produce 1-D type fringes the microspheres can be seen to be along the high intensity vertical regions and are close together in the vertical direction, at 15 seconds into the video the wave-plate is rotated to the position where high visibility lattice patterns are produced, the microspheres can then be seen to move into the high intensity regions of the lattice.

The trapping of particles is only achievable in two dimensions not three dimensions due to the gradient force in the optical axis being less than the scattering force. If the degree of curvature was greater and the angles of refraction and intersection of the core output was increased, this would reduce the axial component of the scattering force and reinforce the transverse component of the gradient force resulting in a stiffer trap. This could be achieved if the diameter of the fiber was reduced before the lensing step, i.e. by tapering the fiber first.

Using this lensed MCF we have demonstrated trapping of multiple biological particles. This technique will allow the study of biological cells held in such close proximity such as the formation of biofilms.

4. Conclusions

We have successfully demonstrated two dimensional interferometric optical trapping using a single multicore fiber shaped using an electric arc fusion splicer. Light was coupled evenly into each core of the four core fiber using a custom made diffractive optical element. This provided a simple and effective way to efficiently couple a single beam into the four cores without the need for beam splitters or fan-out devices. Also, we were able to show some degree of control of the fringe appearance by the introduction of a half wave-plate before the DOE achieving high visibility 2-D and 1-D fringe patterns on appropriate settings of the half wave-plate angle. It has been shown that the robust and efficient electric arc fusion technique can be used to generate four-core interactions from a single fiber.

The interference lattice produced at the overlap region can be used for trapping particles in two dimensions. Particles were observed to be trapped in the high intensity regions of the lattice pattern. The overlap was approximately 250 µm from the end of the fiber and the high intensity regions of the lattice were separated by approximately 2.75 µm. This technique can be used to trap multiple particles at evenly spaced sites across the lattice. Using the half wave-plate control, we have shown the rearrangement of microspheres from a 1-D to 2-D array. This, to the best of our knowledge, is the first demonstration of a four-beam interference pattern from a single optical fiber being used for optical micromanipulation.

Using this fiber probe we have shown evidence of the trapping of E. coli in the same way. Trapping multiple biological particles will allow us to examine the interaction between the cells when held in close proximity and also can allow us to manipulate the formation of biological flocs and biofilms, as well as facilitating the study of quorum sensing and metabolic co-operation interactions

This technique has the possibility of being adapted to optical tweezing by increasing the crossing angle of the fiber output. We are currently looking into the tapering of the MCF to enable a lens with a greater curvature to be created. This will produce a stiffer trap closer to the end of the fiber.

Acknowledgments

H. Bookey is supported by a Royal Society of Edinburgh Scottish Government Personal Research Fellowship. A. Barron acknowledges funding from EPSRC. T. Aspray acknowledges S. Molin (Danish Technical University) for providing bacterial strains.

References and links

1.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]

2.

A. L. Stout, “Detection and characterization of individual intermolecular bonds using optical tweezers,” Biophys. J. 80(6), 2976–2986 (2001). [CrossRef] [PubMed]

3.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368(6467), 113–119 (1994). [CrossRef] [PubMed]

4.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997). [CrossRef] [PubMed]

5.

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999). [CrossRef] [PubMed]

6.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998). [CrossRef]

7.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133(1-6), 7–10 (1997). [CrossRef]

8.

W. Mu, G. Wang, L. Luan, G. C. Spalding, and J. B. Ketterson, “Dynamic control of defects in a two dimensional optically assisted assembly,” New J. Phys. 8(5), 70 (2006). [CrossRef]

9.

B. N. Slama-Eliau and G. Raithel, “Three-dimensional arrays of submicron particles generated by a four-beam optical lattice,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051406 (2011). [CrossRef] [PubMed]

10.

A. N. Rubinov, V. M. Katarkevich, A. A. Afanas’ev, and T. Sh. Efendiev, “Interaction of interference laser field with an ensemble of particles in liquid,” Opt. Commun. 224(1-3), 97–106 (2003). [CrossRef]

11.

A. Casaburi, G. Pesce, P. Zemánek, and A. Sasso, “Two and three beam interferometric optical tweezers,” Opt. Commun. 251(4-6), 393–404 (2005). [CrossRef]

12.

A. L. Barron, A. K. Kar, and H. T. Bookey, “Dual-beam interference from a lensed multicore fiber and its application to optical trapping,” Opt. Express 20(21), 23156–23161 (2012). [CrossRef] [PubMed]

13.

J. S. Liu, A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “Comparison of simulated quenching algorithms for design of diffractive optical elements,” Appl. Opt. 47(6), 807–816 (2008). [CrossRef] [PubMed]

14.

E. J. Min, J. G. Shin, J. H. Lee, Y. Yasuno, and B. H. Lee, “Full range spectral domain optical coherence tomography using a fiber-optic probe as a self-phase shifter,” Opt. Lett. 37(15), 3105–3107 (2012). [CrossRef] [PubMed]

15.

H. Y. Choi, S. Y. Ryms, J. Y. Kim, G. H. Kim, S. J. Park, B. H. Lee, and K. S. Chang, “Microstructured dual-fiber probe for depth-resolved fluorescence measurements,” Opt. Express 19(15), 14172–14181 (2011). [CrossRef]

16.

N. Ma, F. Gunn-Moore, and K. Dholakia, “Optical transfection using an endoscope-like system,” J. Biomed. Opt. 16(2), 028002 (2011). [CrossRef] [PubMed]

17.

C. Liberale, P. Minzioni, F. Brugheri, F. DeAngelis, E. Di Farbrizio, and I. Crisitiani, “Miniature all-fibre probe for three dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007). [CrossRef]

18.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep 3, 1258 (2013). [PubMed]

19.

A. J. Caley, M. Braun, A. J. Waddie, and M. R. Taghizadeh, “Analysis of multimask fabrication errors for diffractive optical elements,” Appl. Opt. 46, 2180–2188 (2007). [CrossRef] [PubMed]

20.

A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology 146(Pt 10), 2395–2407 (2000). [PubMed]

21.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Lett. 9(10), 3387–3391 (2009). [CrossRef] [PubMed]

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.1150) Optical devices : All-optical devices
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: April 3, 2013
Revised Manuscript: May 15, 2013
Manuscript Accepted: May 16, 2013
Published: May 23, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Ashleigh L. Barron, Ajoy K. Kar, Thomas J. Aspray, Andrew J. Waddie, Mohammad R. Taghizadeh, and Henry T. Bookey, "Two dimensional interferometric optical trapping of multiple particles and Escherichia coli bacterial cells using a lensed multicore fiber," Opt. Express 21, 13199-13207 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-11-13199


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. A. L. Stout, “Detection and characterization of individual intermolecular bonds using optical tweezers,” Biophys. J.80(6), 2976–2986 (2001). [CrossRef] [PubMed]
  3. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature368(6467), 113–119 (1994). [CrossRef] [PubMed]
  4. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997). [CrossRef] [PubMed]
  5. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett.24(9), 608–610 (1999). [CrossRef] [PubMed]
  6. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998). [CrossRef]
  7. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun.133(1-6), 7–10 (1997). [CrossRef]
  8. W. Mu, G. Wang, L. Luan, G. C. Spalding, and J. B. Ketterson, “Dynamic control of defects in a two dimensional optically assisted assembly,” New J. Phys.8(5), 70 (2006). [CrossRef]
  9. B. N. Slama-Eliau and G. Raithel, “Three-dimensional arrays of submicron particles generated by a four-beam optical lattice,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051406 (2011). [CrossRef] [PubMed]
  10. A. N. Rubinov, V. M. Katarkevich, A. A. Afanas’ev, and T. Sh. Efendiev, “Interaction of interference laser field with an ensemble of particles in liquid,” Opt. Commun.224(1-3), 97–106 (2003). [CrossRef]
  11. A. Casaburi, G. Pesce, P. Zemánek, and A. Sasso, “Two and three beam interferometric optical tweezers,” Opt. Commun.251(4-6), 393–404 (2005). [CrossRef]
  12. A. L. Barron, A. K. Kar, and H. T. Bookey, “Dual-beam interference from a lensed multicore fiber and its application to optical trapping,” Opt. Express20(21), 23156–23161 (2012). [CrossRef] [PubMed]
  13. J. S. Liu, A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “Comparison of simulated quenching algorithms for design of diffractive optical elements,” Appl. Opt.47(6), 807–816 (2008). [CrossRef] [PubMed]
  14. E. J. Min, J. G. Shin, J. H. Lee, Y. Yasuno, and B. H. Lee, “Full range spectral domain optical coherence tomography using a fiber-optic probe as a self-phase shifter,” Opt. Lett.37(15), 3105–3107 (2012). [CrossRef] [PubMed]
  15. H. Y. Choi, S. Y. Ryms, J. Y. Kim, G. H. Kim, S. J. Park, B. H. Lee, and K. S. Chang, “Microstructured dual-fiber probe for depth-resolved fluorescence measurements,” Opt. Express19(15), 14172–14181 (2011). [CrossRef]
  16. N. Ma, F. Gunn-Moore, and K. Dholakia, “Optical transfection using an endoscope-like system,” J. Biomed. Opt.16(2), 028002 (2011). [CrossRef] [PubMed]
  17. C. Liberale, P. Minzioni, F. Brugheri, F. DeAngelis, E. Di Farbrizio, and I. Crisitiani, “Miniature all-fibre probe for three dimensional optical trapping and manipulation,” Nat. Photonics1(12), 723–727 (2007). [CrossRef]
  18. C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci Rep3, 1258 (2013). [PubMed]
  19. A. J. Caley, M. Braun, A. J. Waddie, and M. R. Taghizadeh, “Analysis of multimask fabrication errors for diffractive optical elements,” Appl. Opt.46, 2180–2188 (2007). [CrossRef] [PubMed]
  20. A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146(Pt 10), 2395–2407 (2000). [PubMed]
  21. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Lett.9(10), 3387–3391 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (14949 KB)     
» Media 2: AVI (4032 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited