## Generalized Jones matrices for anisotropic media |

Optics Express, Vol. 21, Issue 6, pp. 6895-6900 (2013)

http://dx.doi.org/10.1364/OE.21.006895

Acrobat PDF (865 KB)

### Abstract

The interaction of arbitrary three-dimensional light beams with optical elements is described by the generalized Jones calculus, which has been formally proposed recently [Azzam, J. Opt. Soc. Am. A **28**, 2279 (2011)]. In this work we obtain the parametric expression of the

© 2013 OSA

## 1. Introduction

1. K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics **1**(4), 228–231 (2007). [CrossRef]

3. S. Orlov, U. Peschel, T. Bauer, and P. Banzer, “Analytical expansion of highly focused vector beams into vector spherical harmonics and its application to Mie scattering,” Phys. Rev. A **85**(6), 063825 (2012). [CrossRef]

4. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. **40**(1), 1–47 (2007). [CrossRef]

5. R. M. A. Azzam, “Three-dimensional polarization states of monochromatic light fields,” J. Opt. Soc. Am. A **28**(11), 2279–2283 (2011). [CrossRef] [PubMed]

5. R. M. A. Azzam, “Three-dimensional polarization states of monochromatic light fields,” J. Opt. Soc. Am. A **28**(11), 2279–2283 (2011). [CrossRef] [PubMed]

## 2. Generalized Jones calculus and the differential generalized Jones matrix

5. R. M. A. Azzam, “Three-dimensional polarization states of monochromatic light fields,” J. Opt. Soc. Am. A **28**(11), 2279–2283 (2011). [CrossRef] [PubMed]

4. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. **40**(1), 1–47 (2007). [CrossRef]

10. R. M. A. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4x4 matrix calculus,” J. Opt. Soc. Am. **68**(12), 1756–1767 (1978). [CrossRef]

11. N. Ortega-Quijano and J. L. Arce-Diego, “Depolarizing differential Mueller matrices,” Opt. Lett. **36**(13), 2429–2431 (2011). [CrossRef] [PubMed]

## 3. Generalized Jones matrices of basic polarization devices

**28**(11), 2279–2283 (2011). [CrossRef] [PubMed]

## 4. Conclusion

## References and links

1. | K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics |

2. | H. Kang, B. Jia, and M. Gu, “Polarization characterization in the focal volume of high numerical aperture objectives,” Opt. Express |

3. | S. Orlov, U. Peschel, T. Bauer, and P. Banzer, “Analytical expansion of highly focused vector beams into vector spherical harmonics and its application to Mie scattering,” Phys. Rev. A |

4. | J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. |

5. | R. M. A. Azzam, “Three-dimensional polarization states of monochromatic light fields,” J. Opt. Soc. Am. A |

6. | C. R. Jones, “A new calculus for the treatment of optical systems. VII. Properties of the N-matrices,” J. Opt. Soc. Am. |

7. | R. Barakat, “Exponential versions of the Jones and Mueller-Jones polarization matrices,” J. Opt. Soc. Am. A |

8. | C. Brosseau, |

9. | D. Han, Y. S. Kim, and M. E. Noz, “Jones-matrix formalism as a representation of the Lorentz group,” J. Opt. Soc. Am. A |

10. | R. M. A. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4x4 matrix calculus,” J. Opt. Soc. Am. |

11. | N. Ortega-Quijano and J. L. Arce-Diego, “Depolarizing differential Mueller matrices,” Opt. Lett. |

12. | A. Yariv and P. Yeh, |

**OCIS Codes**

(260.0260) Physical optics : Physical optics

(260.2130) Physical optics : Ellipsometry and polarimetry

(260.5430) Physical optics : Polarization

**ToC Category:**

Physical Optics

**History**

Original Manuscript: December 19, 2012

Revised Manuscript: February 7, 2013

Manuscript Accepted: February 7, 2013

Published: March 12, 2013

**Virtual Issues**

Vol. 8, Iss. 4 *Virtual Journal for Biomedical Optics*

**Citation**

Noé Ortega-Quijano and José Luis Arce-Diego, "Generalized Jones matrices for anisotropic media," Opt. Express **21**, 6895-6900 (2013)

http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-6-6895

Sort: Year | Journal | Reset

### References

- K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics1(4), 228–231 (2007). [CrossRef]
- H. Kang, B. Jia, and M. Gu, “Polarization characterization in the focal volume of high numerical aperture objectives,” Opt. Express18(10), 10813–10821 (2010). [CrossRef] [PubMed]
- S. Orlov, U. Peschel, T. Bauer, and P. Banzer, “Analytical expansion of highly focused vector beams into vector spherical harmonics and its application to Mie scattering,” Phys. Rev. A85(6), 063825 (2012). [CrossRef]
- J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys.40(1), 1–47 (2007). [CrossRef]
- R. M. A. Azzam, “Three-dimensional polarization states of monochromatic light fields,” J. Opt. Soc. Am. A28(11), 2279–2283 (2011). [CrossRef] [PubMed]
- C. R. Jones, “A new calculus for the treatment of optical systems. VII. Properties of the N-matrices,” J. Opt. Soc. Am.38(8), 671–685 (1948). [CrossRef]
- R. Barakat, “Exponential versions of the Jones and Mueller-Jones polarization matrices,” J. Opt. Soc. Am. A13(1), 158–163 (1996). [CrossRef]
- C. Brosseau, Fundamentals of polarized light. A statistical optics approach (Wiley, 1998).
- D. Han, Y. S. Kim, and M. E. Noz, “Jones-matrix formalism as a representation of the Lorentz group,” J. Opt. Soc. Am. A14(9), 2290–2298 (1997). [CrossRef]
- R. M. A. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4x4 matrix calculus,” J. Opt. Soc. Am.68(12), 1756–1767 (1978). [CrossRef]
- N. Ortega-Quijano and J. L. Arce-Diego, “Depolarizing differential Mueller matrices,” Opt. Lett.36(13), 2429–2431 (2011). [CrossRef] [PubMed]
- A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1 |

« Previous Article | Next Article »

OSA is a member of CrossRef.