OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 3733–3741

Risky intensity peaks resulting from nonlinear holographic imaging

Sergey G. Garanin, Igor V. Epatko, Roman I. Istomin, Lev V. L’vov, Alexander A. Malyutin, Rene V. Serov, and Stanislaw A. Sukharev  »View Author Affiliations

Applied Optics, Vol. 50, Issue 21, pp. 3733-3741 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (757 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A study of the maximal intensity peaks due to nonlinear holographic images of obstacles such as obscurations or phase defects in a high-power laser system is presented. It is shown that the interference of the high-power plane wave and the converging image wave results in the formation of intensity maximums in the vicinity of the image plane, the values of which significantly exceed the intensity in the image plane itself. For round obstacles, analytical expressions that describe magnitudes and locations of the maxima depending on the radius and the type of obstacle are given. A procedure of numerical modeling that allows estimation of the influence of beam size, medium thickness, type, size, and shape of obstacles onto the properties of nonlinear images is described. It is demonstrated that for a given combination of the nonlinear medium and the high-power beam parameters, there is an intrinsic size of obstacles that is most harmful for the laser system components.

© 2011 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(090.1970) Holography : Diffractive optics
(140.3580) Lasers and laser optics : Lasers, solid-state
(260.5950) Physical optics : Self-focusing
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

Original Manuscript: March 30, 2011
Revised Manuscript: May 31, 2011
Manuscript Accepted: May 31, 2011
Published: July 11, 2011

Sergey G. Garanin, Igor V. Epatko, Roman I. Istomin, Lev V. L’vov, Alexander A. Malyutin, Rene V. Serov, and Stanislaw A. Sukharev, "Risky intensity peaks resulting from nonlinear holographic imaging," Appl. Opt. 50, 3733-3741 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Hunt, K. R. Manes, and P. A. Renard, “Hot images from obscurations,” Appl. Opt. 32, 5973–5982 (1993). [CrossRef] [PubMed]
  2. W. Williams, P. A. Renard, K. R. Manes, D. Milam, J. T. Hunt, and D. Eimerl, “Modeling of self-focusing experiments by beam propagation codes, Rep. UCRL-LR-105821-96-1 (Lawrence Livermore National Laboratory, 1996).
  3. C. C. Widmayer, D. Milam, and S. P. Deszoeke, “Nonlinear formation of holographic images of obscurations in laser beams,” Appl. Opt. 36, 9342–9347 (1997). [CrossRef]
  4. C. C. Widmayer, M. R. Nickels, and D. Milam, “Nonlinear holographic imaging of phase errors,” Appl. Opt. 37, 4801–4805 (1998). [CrossRef]
  5. L. P. Xie, F. Jing, J. L. Zhao, J. Q. Su, W. Y. Wang, and H. S. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236, 343–348 (2004). [CrossRef]
  6. L. P. Xie, J. L. Zhao, and F. Jing, “Second-order hot image from a scatter in high-power laser systems,” Appl. Opt. 44, 2553–2557 (2005). [CrossRef] [PubMed]
  7. Y. Wang, S. Wen, L. Zhang, Y. Hu, and D. Fan, “Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss,” Appl. Opt. 47, 1152–1163 (2008). [CrossRef] [PubMed]
  8. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007). [CrossRef] [PubMed]
  9. M. L. André, “The French Megajoule Laser Project (LMJ),” Fusion Eng. Des. 44, 43–49, 1999. [CrossRef]
  10. S. G. Garanin, A. I. Zaretskii, R. I. Il'kaev, G. A. Kirillov, G. G. Kochemasov, R. F. Kurunov, V. M. Murugov, S. A. Sukharev, “Channel of a high-power laser fusion Luch facility emitting 3.3-kJ and 4-ns pulses,” Quantum Electron. 35, 299 (2005). [CrossRef]
  11. I. V. Epatko, A. A. Malyutin, R. V. Serov, D. A. Solov'ev, A. D. Chulkin, “New algorithm for numerical simulation of the propagation of laser radiation,” Quantum Electron. 28, 697–702 (1998) [CrossRef]
  12. I. V. Epatko, R. V. Serov, “Advantage of fast Fourier interpolation for laser modeling,” J. Phys. IV 133, 679–682(2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited