OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3224–3227

Tungsten wire grid polarizer for applications in the DUV spectral range

Thomas Weber, Thomas Käsebier, Michael Helgert, Ernst-Bernhard Kley, and Andreas Tünnermann  »View Author Affiliations

Applied Optics, Vol. 51, Issue 16, pp. 3224-3227 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (563 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present a broadband wire grid polarizer with a spectral working range down to a wavelength of 193 nm. Tungsten is chosen as grating material because it provides a high extinction ratio and transmission compared with other common grating materials. The fabrication of the grating with 100 nm period was accomplished using a spatial frequency doubling approach based on ultrafast electron beam lithography and a sophisticated deposition technique. At a wavelength of 193 nm, a transmission of about 44% and an extinction ratio of 20 was measured.

© 2012 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.5440) Optical devices : Polarization-selective devices
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Diffraction and Gratings

Original Manuscript: January 23, 2012
Manuscript Accepted: January 26, 2012
Published: May 23, 2012

Thomas Weber, Thomas Käsebier, Michael Helgert, Ernst-Bernhard Kley, and Andreas Tünnermann, "Tungsten wire grid polarizer for applications in the DUV spectral range," Appl. Opt. 51, 3224-3227 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Xu, H. P. Urbach, D. K. G. de Boer, and H. J. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13, 2303–2320 (2005). [CrossRef]
  2. G. R. Bird and M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960). [CrossRef]
  3. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005). [CrossRef]
  4. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006). [CrossRef]
  5. B. Schnabel, E.-B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999). [CrossRef]
  6. T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6, 558 (2011). [CrossRef]
  7. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007). [CrossRef]
  8. G. G. Kang, I. Vartiainen, B. F. Bai, H. Tuovinen, and J. Turunen, “Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band,” Appl. Phys. Lett. 99, 071103 (2011). [CrossRef]
  9. V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum nanowire polarizing grids: fabrication and analysis,” Appl. Phys. Lett. 88, 211114 (2006). [CrossRef]
  10. Y.-R. Hong, K. Asakawa, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire grid polarizer for very deep ultraviolet fabricated from a shear-aligned diblock copolymer template,” Opt. Lett. 32, 3125–3127 (2007). [CrossRef]
  11. Z. Yang and Y. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15, 9510–9519 (2007). [CrossRef]
  12. T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36, 445–447 (2011). [CrossRef]
  13. T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009). [CrossRef]
  14. Grating Solver Development Co., http://www.gsolver.com .
  15. J. Weaver, C. Olson, and D. Lynch, “Optical properties of crystalline tungsten,” Phys. Rev. B 12, 1293 (1975). [CrossRef]
  16. G. Hass, G. Jacobus, and W. Hunter, “Optical properties of evaporated iridium in the vacuum ultraviolet from 500 angstroms to 2000 angstroms,” J. Opt. Soc. Am. 57, 758–760(1967). [CrossRef]
  17. W. Hunter, “Optical constants of metals in the extreme ultraviolet. II. Optical constants of aluminum, magnesium, and indium at wavelengths shorter than their critical wavelengths,” J. Opt. Soc. Am. 54, 208–211 (1964). [CrossRef]
  18. A. Lehmuskero, M. Kuittinen, and P. Vahimaa, “Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness,” Opt. Express 15, 10744–10752 (2007). [CrossRef]
  19. D. Lehr, K. Dietrich, C. Helgert, T. Käsebier, H.-J. Fuchs, A. Tünnermann, and E.-B. Kley, “Plasmonic properties of aluminum nanorings generated by double patterning,” Opt. Lett. 37, 157–159 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited