OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 16 — Jun. 1, 2012
  • pp: 3684–3691

Intensity dependent residual amplitude modulation in electro-optic phase modulators

Juna Sathian and Esa Jaatinen  »View Author Affiliations

Applied Optics, Vol. 51, Issue 16, pp. 3684-3691 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Residual amplitude modulation (RAM) mechanisms in electro-optic phase modulators are detrimental in applications that require high purity phase modulation of the incident laser beam. While the origins of RAM are not fully understood, measurements have revealed that it depends on the beam properties of the laser as well as the properties of the medium. Here we present experimental and theoretical results that demonstrate, for the first time, the dependence of RAM production in electro-optic phase modulators on beam intensity. The results show an order of magnitude increase in the level of RAM, around 10 dB, with a fifteenfold enhancement in the input intensity from 12 to 190mW/mm2. We show that this intensity dependent RAM is photorefractive in origin.

© 2012 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(160.3730) Materials : Lithium niobate
(190.5330) Nonlinear optics : Photorefractive optics
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Optical Devices

Original Manuscript: February 22, 2012
Revised Manuscript: April 23, 2012
Manuscript Accepted: April 26, 2012
Published: June 1, 2012

Juna Sathian and Esa Jaatinen, "Intensity dependent residual amplitude modulation in electro-optic phase modulators," Appl. Opt. 51, 3684-3691 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000). [CrossRef]
  2. L.-S. Ma, J. Ye, and J. L. Hall, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” in Proceedings of the 28th Annual Precise Time and Time Inteval (PTTI) Applications and Planning Meeting, L. A. Breakiron, ed. (U. S. Naval Observatory, 1997), pp. 289–303.
  3. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985). [CrossRef]
  4. S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B 98, 33–39 (2010). [CrossRef]
  5. E. Jaatinen and J.-M. Chartier, “Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm,” Metrologia 35, 75–81 (1998). [CrossRef]
  6. F. du Burck and O. Lopez, “Correction of the distortion in frequency modulation spectroscopy,” Meas. Sci. Technol. 15, 1327–1336 (2004). [CrossRef]
  7. E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol. 20, 025302 (2009). [CrossRef]
  8. E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng. 46, 69–74(2008). [CrossRef]
  9. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985). [CrossRef]
  10. C. Ishibashi, J. Ye, and J. L. Hall, “Analysis/reduction of residual amplitude modulation in phase/frequency modulation by an EOM,” in Conference on Quantum Electronics and Laser Science (QELS)Technical Digest Series (Institute of Electrical and Electronics Engineers, 2002), pp. 91–92.
  11. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985). [CrossRef]
  12. F. du Burack, A. Tabet, and O. Lopez, “Frequency-modulated laser beam with highly efficient intensity stabilisation,” Electron. Lett. 41, 188–190 (2005). [CrossRef]
  13. F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas. 52, 288–291 (2003). [CrossRef]
  14. R. K. Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, “Optical properties of MgO doped LiNbO3 single crystals,” Opt. Mater. (Amsterdam) 28, 467–472 (2006). [CrossRef]
  15. D. E. Zelmon, D. L. Small, and D. H. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997). [CrossRef]
  16. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984). [CrossRef]
  17. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966). [CrossRef]
  18. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3396(1969). [CrossRef]
  19. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiTaO3 as an effective material for nonlinear optics,” Opt. Lett. 23, 1892–1894 (1998). [CrossRef]
  20. T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994). [CrossRef]
  21. L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. Pure Appl. Opt. 5, S280–S283 (2003). [CrossRef]
  22. G. G. Zong, J. Jian, and Z. K. Wu, "Measurement of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO," in 11th International Quantum Electronics Conference (IEEE, 1980), p. 631.
  23. A. Yariv, Quantum Electronic, 3rd ed. (Wiley, 1989).
  24. I. Turek and N. Tarjányi, “Investigation of symmetry of photorefractive effect in LiNbO3,” Opt. Express 15, 10782–10788 (2007). [CrossRef]
  25. J. Schwesyg, M. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010). [CrossRef]
  26. B. Ya Zel’dovich, and V. I. Safonov, “Influence of the photogalvanic effect on the formation of gratings by the phase-locked detection mechanism,” Quantum Electron. 24, 1008–1009 (1994). [CrossRef]
  27. S. T. Lin, Y. Y. Lin, T. D. Wang, and Y. C. Huang, “Thermal waveguide OPO,” Opt. Express 18, 1323–1329 (2010). [CrossRef]
  28. J. R. Schwesyg, M. Falk, C. R. Phillips, D. H. Jundt, K. Buse, and M. M. Fejer, “Pyroelectrically induced photorefractive damage in magnesium-doped lithium niobate crystals,” J. Opt. Soc. Am. B 28, 1973–1987 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited