OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 17 — Jun. 10, 2012
  • pp: 3847–3852

Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass

Christoph Gerhard, Sophie Roux, Stephan Brückner, Stephan Wieneke, and Wolfgang Viöl  »View Author Affiliations

Applied Optics, Vol. 51, Issue 17, pp. 3847-3852 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (535 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on atmospheric pressure argon plasma-based surface treatment and hybrid laser-plasma ablation of barite crown glass N-BaK4 and heavy flint glass SF5. By pure plasma treatment, a significant surface smoothing, as well as an increase in both the surface energy and the strength of the investigated glass surfaces, was achieved. It was shown that for both glasses, hybrid laser plasma ablation allows an increase in the ablation depth by a factor of 2.1 with respect to pure laser ablation. The ablated volume was increased by an averaged factor of 1.5 for N-BaK4 and 3.7 for SF5.

© 2012 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials
(240.6700) Optics at surfaces : Surfaces
(350.5400) Other areas of optics : Plasmas

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 31, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 27, 2012
Published: June 8, 2012

Christoph Gerhard, Sophie Roux, Stephan Brückner, Stephan Wieneke, and Wolfgang Viöl, "Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass," Appl. Opt. 51, 3847-3852 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Gerhard, F. Druon, P. Blandin, M. Hanna, F. Balembois, P. Georges, and F. Falcoz, “Efficient versatile-repetition-rate picosecond source for material processing applications,” Appl. Opt. 47, 967–974 (2008). [CrossRef]
  2. L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001). [CrossRef]
  3. O. Utéza, N. Sanner, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: crater depth and diameter, and efficiency as a function of laser intensity,” J. Laser Micro Nanoeng. 5, 238–241 (2010). [CrossRef]
  4. P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999). [CrossRef]
  5. J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys. A 54, 363–368 (1992). [CrossRef]
  6. J. Zhang, K. Sugioka, and K. Midorikawa, “High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers,” Appl. Phys. A 69, S879–S882 (1999). [CrossRef]
  7. S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films 477, 216–221 (2005). [CrossRef]
  8. J. Zhang, K. Sugioka, and K. Midorikawa, “Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser,” Opt. Lett. 23, 1486–1488 (1998). [CrossRef]
  9. R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. Atom. Spectr. 17, 1072–1075 (2002). [CrossRef]
  10. J. Wang, H. Niino, and A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999). [CrossRef]
  11. T. Sato, Y. Kawaguchi, R. Kurosaki, A. Narazaki, W. Watanabe, and H. Niino, “Laser-induced backside wet etching employing green DPSS laser and liquid metallic absorber,” J. Laser Micro Nanoeng. 6, 204–208 (2011). [CrossRef]
  12. K. Zimmer, R. Böhme, and B. Rauschenbach, “Laser etching of fused silica using an adsorbed toluene layer,” Appl. Phys. A 79, 1883–1885 (2004). [CrossRef]
  13. R. Böhme, K. Zimmer, and B. Rauschenbach, “Laser backside etching of fused silica due to carbon layer ablation,” Appl. Phys. A 82, 325–328 (2006). [CrossRef]
  14. C. Gerhard, D. Tasche, S. Brückner, S. Wieneke, and W. Viöl, “Near-surface modification of optical properties of fused silica by low-temperature hydrogenous atmospheric pressure plasma,” Opt. Lett. 37, 566–568 (2012). [CrossRef]
  15. S. Brückner, J. Hoffmeister, J. Ihlemann, C. Gerhard, S. Wieneke, and W. Viöl, “Hybrid laser-plasma micro-structuring of fused silica based on surface reduction by a low-temperature atmospheric pressure plasma,” J. Laser Micro. Nanoeng. 7, 73–76 (2012). [CrossRef]
  16. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: a review,” Spectrochim. Acta B 61, 2–30 (2006). [CrossRef]
  17. C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006). [CrossRef]
  18. J. H. Parka, N.-E. Lee, J. Lee, J. S. Park, and H. D. Park, “Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas,” Microelectron. Eng. 82, 119–128 (2005). [CrossRef]
  19. X. Li, T. Abe, and M. Esashi, “Deep reactive ion etching of Pyrex glass using SF6 plasma,” Sens. Actuators A 87, 139–145 (2001). [CrossRef]
  20. P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55, 191–196 (1999). [CrossRef]
  21. T. Akashi, and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromech. Microeng. 16, 1051–1056 (2006). [CrossRef]
  22. K. Kolari, V. Saarela, and S. Franssila, “Deep plasma etching of glass for fluidic devices with different mask materials,” J. Micromech. Microeng. 18, 064010 (2008). [CrossRef]
  23. X. Li, L. Ling, X. Hua, M. Fukasawa, and G. S. Oehrlein, “Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas,” J. Vac. Sci. Technol. A 21, 284–293 (2003). [CrossRef]
  24. J. W. Coburn and H. F. Winters, “Ion- and electron-assisted gas-surface chemistry—an important effect in plasma etching,” J. Appl. Phys. 50, 3189–3196 (1979). [CrossRef]
  25. T. Thöniss, G. Adams, and C. Gerhard, “Optical system design—software tools cover envelope calculations to the final engineering drawings,” Opt. Photonik 4, 30–33 (2009). [CrossRef]
  26. S. Brückner, S. Rösner, C. Gerhard, S. Wieneke, and W. Viöl, “Plasma-based ionisation spectroscopy for material analysis,” Mater. Test. 53, 639–642 (2011).
  27. T. C. Manley, “The electric characteristics of the ozonator discharge,” ECS Trans. 84, 83–96 (1943). [CrossRef]
  28. A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Viöl, “The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air,” New J. Phys. 11, 115025 (2009). [CrossRef]
  29. Schott AG, Datasheet: Optical Glass Catalog (2011).
  30. D. H. Kaelble, “Peel adhesion: influence of surface energies and adhesive rheology,” J. Adhes. Sci. Technol. 1, 102–123 (1969). [CrossRef]
  31. D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci. 13, 1741–1747 (1969). [CrossRef]
  32. A. Paul, Chemistry of Glasses (Chapman and Hall, 1990).
  33. N. Baguer, A. Bogaerts, Z. Donko, R. Gijbels, and N. Sadeghi, “Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements,” J. Appl. Phys. 97, 123305 (2005). [CrossRef]
  34. B. Niermann, R. Reuter, T. Kuschel, J. Benedikt, M. Böke, and J. Winter, “Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure,” Plasma Sources Sci. Technol. 21, 034002 (2012). [CrossRef]
  35. S. G. Belostotskiy, V. M. Donnelly, D. J. Economou, and N. Sadeghi, “Spatially resolved measurements of argon metastable (1s5) density in a high pressure microdischarge using diode laser absorption spectroscopy,” IEEE Trans. Plasma Sci. 37, 852–858 (2009). [CrossRef]
  36. W. Masterton, E. Slowinski, and C. Stanitski, Chemical Principles (Saunders College, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited