OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 33 — Nov. 20, 2012
  • pp: 7891–7899

Aureolegraph internal scattering correction

John DeVore, Dennis Villanucci, and Andrew LePage  »View Author Affiliations


Applied Optics, Vol. 51, Issue 33, pp. 7891-7899 (2012)
http://dx.doi.org/10.1364/AO.51.007891


View Full Text Article

Enhanced HTML    Acrobat PDF (1255 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two methods of determining instrumental scattering for correcting aureolegraph measurements of particulate solar scattering are presented. One involves subtracting measurements made with and without an external occluding ball and the other is a modification of the Langley Plot method and involves extrapolating aureolegraph measurements collected through a large range of solar zenith angles. Examples of internal scattering correction determinations using the latter method show similar power-law dependencies on scattering, but vary by roughly a factor of 8 and suggest that changing aerosol conditions during the determinations render this method problematic. Examples of corrections of scattering profiles using the former method are presented for a range of atmospheric particulate layers from aerosols to cumulus and cirrus clouds.

© 2012 Optical Society of America

OCIS Codes
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.1310) Scattering : Atmospheric scattering
(290.5820) Scattering : Scattering measurements
(290.2558) Scattering : Forward scattering
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 21, 2012
Manuscript Accepted: October 4, 2012
Published: November 13, 2012

Citation
John DeVore, Dennis Villanucci, and Andrew LePage, "Aureolegraph internal scattering correction," Appl. Opt. 51, 7891-7899 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-33-7891


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Vilas and B. A. Smith, “Coronagraph for astronomical imaging and spectrophotometry,” Appl. Opt. 26, 664–668 (1987). [CrossRef]
  2. J. G. DeVore, A. T. Stair, A. LePage, D. Rall, J. Atkinson, D. Villanucci, S. A. Rappaport, P. C. Joss, and R. A. McClatchey, “Retrieving properties of thin clouds from solar aureole measurements,” J. Atmos. Ocean. Technol. 26, 2531–2548 (2009). [CrossRef]
  3. M. B. Lyot, “A study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580 (1939).
  4. N. T. O’Neill and J. R. Miller, “Combined solar aureole and solar beam extinction measurements. 1: calibration considerations,” Appl. Opt. 23, 3691–3696 (1984). [CrossRef]
  5. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakamima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]
  6. A. Ångström, “Apparent solar constant variations and their relation to the variability of atmospheric transmission,” Tellus 22, 205–218 (1970). [CrossRef]
  7. K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Academic, 2002).
  8. M. Nicolet, “On the molecular scattering in the terrestrial atmosphere: an empirical formula for its calculation in the homosphere,” Planet. Space Sci. 32, 1467–1468 (1984). [CrossRef]
  9. J. V. Dave, “Importance of higher order scattering in a molecular atmosphere,” J. Opt. Soc. Am. 54, 307–315 (1964). [CrossRef]
  10. A. Marshak and A. B. Davis, “Numerical methods,” in 3D Radiative Transfer in Cloudy Atmospheres, A. Marshak and A. B. Davis, eds. (Springer, 2005), pp 243–281.
  11. I. M. Sobol, A Primer for the Monte Carlo Method (CRC Press, 1994).
  12. D. Hestroffer and C. Magnan, “Wavelength dependency of the solar limb darkening,” Astron. Astrophys. 333, 338–342 (1984).
  13. M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1959).
  14. T. Nakajima, G. Tonna, R. Rao, P. Boi, Y. Kaufman, and B. Holben, “Use of sky brightness measurements from ground for remote sensing of particulate polydispersions,” Appl. Opt. 35, 2672–2686 (1996). [CrossRef]
  15. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105, 20,673–20,696 (2000). [CrossRef]
  16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge, 1992).
  17. J. G. DeVore, “Improved normalization of the size distribution of atmospheric particles retrieved from aureole measurements using the diffraction approximation,” J. Atmos. Ocean. Technol. 28, 1019–1027 (2011). [CrossRef]
  18. P. Yang, B. A. Baum, A. J. Heymsfield, H. Hu, H.-L. Huang, S.-C. Tsay, and S. Ackerman, “Single-scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer 79, 1159–1169 (2003). [CrossRef]
  19. S. Wilbert, B. Reinhardt, J. DeVore, M. Röger, R. Pitz-Paal, and C. Gueymard, “Measurement of solar radiance profiles with the Sun and Aureole Measurement System (SAM),” in Proceedings of the International SolarPACES Conference (SolarPACES, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited