OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: B10–B19

Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy

Jennifer L. Gottfried  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. B10-B19 (2013)
http://dx.doi.org/10.1364/AO.52.000B10


View Full Text Article

Enhanced HTML    Acrobat PDF (1146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced breakdown spectroscopy is a promising approach for explosive residue detection, but several limitations to its widespread use remain. One issue is that the emission spectra of the residues are dependent on the substrate composition because some of the substrate is usually entrained in the laser-induced plasma and the laser–material interaction can be significantly affected by the substrate type. Here, we have demonstrated that despite the strong spectral variation in cyclotrimethylenetrinitramine (RDX) residues applied to various metal substrates, classification of the RDX residue independent of substrate type is feasible. Several approaches to improving the chemometric models based on partial least squares discriminant analysis (PLS-DA) have been described: classifying the RDX residue spectra together in one class independent of substrate, using selected emission intensities and ratios to increase the true positive rate (TPR) and decrease the false positive rate (FPR), and fusing the results from two PLS-DA models generated using the full broadband spectra and selected intensities and ratios. The combination of these approaches resulted in a TPR of 97.5% and a FPR of 1.0% for RDX classification on metal substrates.

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3420) Remote sensing and sensors : Laser sensors
(280.1545) Remote sensing and sensors : Chemical analysis
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: August 14, 2012
Manuscript Accepted: September 5, 2012
Published: October 18, 2012

Citation
Jennifer L. Gottfried, "Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy," Appl. Opt. 52, B10-B19 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-B10


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009). [CrossRef]
  2. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  3. V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta B 62, 1321–1328 (2007). [CrossRef]
  4. V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta B 64, 1028–1039 (2009). [CrossRef]
  5. P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66 (2010). [CrossRef]
  6. P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B 66, 12–20 (2011). [CrossRef]
  7. M. Civiš, S. Civiš, K. N. Sovová, K. Dryahina, P. Španěl, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011). [CrossRef]
  8. F. C. De Lucia, and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010). [CrossRef]
  9. J. L. Gottfried, “Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles,” Appl. Opt. 51, B13–B21 (2012). [CrossRef]
  10. D. A. Cremers and R. C. Chinni, “Laser-induced breakdown spectroscopy: capabilities and limitations,” Appl. Spectrosc. Rev. 44, 457–506 (2009). [CrossRef]
  11. C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geersten, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997). [CrossRef]
  12. S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007). [CrossRef]
  13. J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 24, 288–296 (2009). [CrossRef]
  14. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochem. Acta B 65, 1–14 (2010). [CrossRef]
  15. V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Detection of explosives in traces by laser induced breakdown spectroscopy: differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B 66, 644–655 (2011). [CrossRef]
  16. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012). [CrossRef]
  17. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 23, 205–216 (2008). [CrossRef]
  18. F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51, B83–B92 (2012). [CrossRef]
  19. Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, “Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive,” Spectrochim. Acta B 63, 1011–1015 (2008). [CrossRef]
  20. D. M. Wong and P. J. Dagdigian, “Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 micron,” Appl. Opt. 47, G149–G157 (2008). [CrossRef]
  21. M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003). [CrossRef]
  22. V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006). [CrossRef]
  23. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B 62, 1405–1411 (2007). [CrossRef]
  24. C. Lopez-Moreno, S. Palanco, J. Javier Laserna, F. C. De Lucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces,” J. Anal. At. Spectrom. 21, 55–60 (2006). [CrossRef]
  25. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008). [CrossRef]
  26. R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier,” J. Anal. At. Spectrom. 24, 1123–1126 (2009). [CrossRef]
  27. I.-G. Chong and C.-H. Jun, “Performance of some variable selection methods when multicollinearity is present,” Chemom. Intell. Lab. Syst. 78, 103–112 (2005). [CrossRef]
  28. J. A. Aguilera, C. Aragón, V. Madurga, and J. Manrique, “Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy,” Spectrochim. Acta B 64, 993–998 (2009). [CrossRef]
  29. F. C. De Lucia and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue discrimination,” Spectrochim. Acta B 66, 122–128 (2011). [CrossRef]
  30. Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST atomic spectra database (version 4.1),” http://physics.nist.gov/asd .
  31. J. L. Gottfried, “Discrimination of biological and chemical threats in residue mixtures on multiple surfaces,” Anal. Bioanal. Chem. 400, 3289–3301 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited