OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 11 — Nov. 1, 2012
  • pp: 2896–2906

Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion

X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, and Y. F. Lu  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 11, pp. 2896-2906 (2012)
http://dx.doi.org/10.1364/BOE.3.002896


View Full Text Article

Enhanced HTML    Acrobat PDF (4250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microalgae are extensively researched as potential feedstocks for biofuel production. Energy-rich compounds in microalgae, such as lipids, require efficient characterization techniques to investigate the metabolic pathways and the environmental factors influencing their accumulation. The model green alga Coccomyxa accumulates significant amounts of triacylglycerols (TAGs) under nitrogen depletion (N-depletion). To monitor the growth of TAGs (lipid) in microalgal cells, a study of microalgal cells (Coccomyxa sp. C169) using both spontaneous Raman and coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy were carried out. Spontaneous Raman spectroscopy was conducted to analyze the components in the algal cells, while CARS was carried out to monitor the distribution of lipid droplets in the cells. Raman signals of carotenoid are greater in control microalgae compared to N-depleted cells. Raman signals of lipid droplets appear after N-depletion and its distribution can be clearly observed in the CARS microscopy. Both spontaneous Raman spectroscopy and CARS microscopy were found to be suitable analysis tools for microalgae.

© 2012 OSA

OCIS Codes
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6450) Spectroscopy : Spectroscopy, Raman
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Microscopy

History
Original Manuscript: September 4, 2012
Revised Manuscript: October 13, 2012
Manuscript Accepted: October 15, 2012
Published: October 18, 2012

Citation
X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, and Y. F. Lu, "Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion," Biomed. Opt. Express 3, 2896-2906 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-11-2896


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins, “Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances,” Plant J.54(4), 621–639 (2008). [CrossRef] [PubMed]
  2. S. A. Scott, M. P. Davey, J. S. Dennis, I. Horst, C. J. Howe, D. J. Lea-Smith, and A. G. Smith, “Biodiesel from algae: challenges and prospects,” Curr. Opin. Biotechnol.21(3), 277–286 (2010). [CrossRef] [PubMed]
  3. R. H. Wijffels and M. J. Barbosa, “An outlook on microalgal biofuels,” Science329(5993), 796–799 (2010). [CrossRef] [PubMed]
  4. L. Rodolfi, G. Chini Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M. R. Tredici, “Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor,” Biotechnol. Bioeng.102(1), 100–112 (2009). [CrossRef] [PubMed]
  5. J. Msanne, D. Xu, A. R. Konda, J. A. Casas-Mollano, T. Awada, E. B. Cahoon, and H. Cerutti, “Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169,” Phytochemistry75, 50–59 (2012). [CrossRef] [PubMed]
  6. A. Demirbas, “Importance of biodiesel as transportation fuel,” Energy Policy35(9), 4661–4670 (2007). [CrossRef]
  7. R. J. Radmer and B. C. Parker, “Commercial applications of algae: opportunities and constraints,” J. Appl. Phycol.6(2), 93–98 (1994). [CrossRef]
  8. J. Sheehan, T. Dunahay, R. Benemann, G. Roessler, and C. Weissman, “A look back at the U.S. department of energy’s aquatic species program biodiesel from algae,” National Renewable Energy Laboratory Report NREL/TP-580-24190 (July 1998).
  9. G. A. Thompson., “Lipids and membrane function in green algae,” Biochim. Biophys. Acta1302(1), 17–45 (1996). [CrossRef] [PubMed]
  10. H. J. van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes,” Proc. Natl. Acad. Sci. U.S.A.102(29), 10159–10164 (2005). [CrossRef] [PubMed]
  11. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 883–909 (2008). [CrossRef] [PubMed]
  12. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev.137(3A), A801–A818 (1965). [CrossRef]
  13. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B108(3), 827–840 (2004). [CrossRef]
  14. J. X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J.83(1), 502–509 (2002). [CrossRef] [PubMed]
  15. R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974). [CrossRef]
  16. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett.29(24), 2923–2925 (2004). [CrossRef] [PubMed]
  17. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett.31(2), 241–243 (2006). [CrossRef] [PubMed]
  18. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett.31(12), 1872–1874 (2006). [CrossRef] [PubMed]
  19. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999). [CrossRef]
  20. M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett.25(24), 1768–1770 (2000). [CrossRef] [PubMed]
  21. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005). [CrossRef] [PubMed]
  22. J. X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J.83(1), 502–509 (2002). [CrossRef] [PubMed]
  23. E. R. Dufresne, E. I. Corwin, N. A. Greenblatt, J. Ashmore, D. Y. Wang, A. D. Dinsmore, J. X. Cheng, X. S. Xie, J. W. Hutchinson, and D. A. Weitz, “Flow and fracture in drying nanoparticle suspensions,” Phys. Rev. Lett.91(22), 224501 (2003). [CrossRef] [PubMed]
  24. G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.27(13), 1093–1095 (2002). [CrossRef] [PubMed]
  25. X. Nan, W. Y. Yang, and X. S. Xie, “CARS microscopy lights up lipids in living cells,” Biophotonics Int.11, 44–47 (2004).
  26. E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc.34(9), 642–650 (2003). [CrossRef]
  27. X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy,” Biophys. J.91(2), 728–735 (2006). [CrossRef] [PubMed]
  28. J. H. Strickler and W. W. Webb, “Two-photon excitation in laser scanning fluorescence microscopy,” Proc. SPIE1398, 107–118 (1991). [CrossRef]
  29. E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” Proc. SPIE1674, 776–782 (1992). [CrossRef]
  30. T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B113(38), 12663–12668 (2009). [CrossRef] [PubMed]
  31. K. Ikeda and K. Uosaki, “Coherent phonon dynamics in single-walled carbon nanotubes studied by time-frequency two-dimensional coherent anti-stokes Raman scattering spectroscopy,” Nano Lett.9(4), 1378–1381 (2009). [CrossRef] [PubMed]
  32. S. A. Akhmanov, N. I. Koroteev, and A. I. Kholodnykh, “Excitation of the coherent optical phonons of Eg-type in calcite by means of the active spectroscopy method,” J. Raman Spectrosc.2(3), 239–248 (1974). [CrossRef]
  33. D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc.134(8), 3623–3626 (2012). [CrossRef] [PubMed]
  34. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007). [CrossRef]
  35. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  36. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. i. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express18(13), 13708–13719 (2010). [CrossRef] [PubMed]
  37. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11, 033026 (2009).
  38. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science330(6009), 1368–1370 (2010). [CrossRef] [PubMed]
  39. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microscopy and study of lipid vesicles,” J. Phys. Chem. B106(34), 8493–8498 (2002). [CrossRef]
  40. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.26(17), 1341–1343 (2001). [CrossRef] [PubMed]
  41. H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett.86(12), 121113 (2005). [CrossRef]
  42. G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.27(13), 1093–1095 (2002). [CrossRef] [PubMed]
  43. S. H. Parekh, Y. J. Lee, K. A. Aamer, and M. T. Cicerone, “Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy,” Biophys. J.99(8), 2695–2704 (2010). [CrossRef] [PubMed]
  44. T. Baldacchini and R. Zadoyan, “In situ and real time monitoring of two-photon polymerization using broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Express18(18), 19219–19231 (2010). [CrossRef] [PubMed]
  45. R. A. Andersen, Algal Culturing Techniques (Academic–Elsevier, San Diego, CA, 2005).
  46. Y. Y. Huang, C. M. Beal, W. W. Cai, R. S. Ruoff, and E. M. Terentjev, “Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior,” Biotechnol. Bioeng.105(5), 889–898 (2010). [PubMed]
  47. T. G. Tornabene, G. Holzer, S. Lien, and N. Burris, “Lipid composition of the nitrogen starved green alga Neochloris oleoabundans,” Enzyme Microb. Technol.5(6), 435–440 (1983). [CrossRef]
  48. G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis: the basics,” Annu. Rev. Plant Physiol. Plant Mol. Biol.42(1), 313–349 (1991). [CrossRef]
  49. N. E. Holt, J. T. M. Kennis, and G. R. Fleming, “Femtosecond fluorescence upconversion studies of light harvesting by β-carotene in oxygenic photosynthetic core proteins,” J. Phys. Chem. B108(49), 19029–19035 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited