OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3307–3316

Thermally induced scattering of radiation in laser ceramics with arbitrary grain size

Anton G. Vyatkin and Efim A. Khazanov  »View Author Affiliations

JOSA B, Vol. 29, Issue 12, pp. 3307-3316 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermally induced beam distortions in laser ceramics with arbitrary grain size have been investigated. A model for the spatial spectral density of dielectric permeability variations was suggested. The average scattered intensity was calculated using the small disturbances method (theory of Rayleigh–Debye scattering). The direction pattern of the scattered field and the extinction coefficient have been obtained. The scattered power and the depolarization ratio fit with the corresponding values obtained in the geometric optics approximation in the range of its validity.

© 2012 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(260.1440) Physical optics : Birefringence
(290.5870) Scattering : Scattering, Rayleigh
(140.3295) Lasers and laser optics : Laser beam characterization
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:

Original Manuscript: July 5, 2012
Revised Manuscript: October 8, 2012
Manuscript Accepted: October 8, 2012
Published: November 16, 2012

Anton G. Vyatkin and Efim A. Khazanov, "Thermally induced scattering of radiation in laser ceramics with arbitrary grain size," J. Opt. Soc. Am. B 29, 3307-3316 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Taira, A. Ikesue, and K. Yoshida, “Diode pumped Nd:YAG ceramics lasers,” in Advanced Solid State Lasers, W. Bosenberg and M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), paper CS4.
  2. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001). [CrossRef]
  3. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000). [CrossRef]
  4. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1, 93–177 (2007). [CrossRef]
  5. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002). [CrossRef]
  6. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36, 397–429 (2006). [CrossRef]
  7. B. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid-state laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2008), paper WC5.
  8. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941(2000). [CrossRef]
  9. A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Ceram. Am. Soc. 78, 225–228 (1995). [CrossRef]
  10. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Ceram. Am. Soc. 78, 1033–1040 (1995). [CrossRef]
  11. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K.-I. Ueda, Y. Akiyama, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “1.46 kW CW Nd:YAG ceramic laser,” presented at the Advanced Solid-State Lasers, Quebec, Canada, 3–6 February 2002.
  12. J.-F. Bisson, H. Yagi, T. Yanagitani, A. A. Kaminskii, Y. N. Barabanenkov, and K.-I. Ueda, “Influence of the grain boundaries on the heat transfer in laser ceramics,” Opt. Rev. 14, 1–13(2007). [CrossRef]
  13. C. Jacinto, A. Benayas, T. Catunda, J. García-Soĺ, A. A. Kaminskii, and D. Jaque, “Microstructuration induced differences in the thermo-optical and luminescence properties of Nd:YAG fine grain ceramics and crystals,” J. Chem. Phys. 129, 104705 (2008). [CrossRef]
  14. A. A. Kaminski, M. Sh. Akchurin, V. I. Alshits, K. Ueda, K. Takaichi, J. Lu, T. Uematsu, M. Musha, A. Shirikawa, V. Gabler, H. J. Eichler, H. Yagi, T. Yanagitani, S. N. Bagayev, J. Fernandez, and R. Balda, “New data on the physical properties of Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 48, 515–519 (2003). [CrossRef]
  15. J. Sanghera, B. Shaw, W. Kim, G. Villalobos, C. Baker, J. Frantz, M. Hunt, B. Sadowski, and I. Aggarwal, “Ceramic laser materials,” Proc. SPIE 7912, 79121Q (2011). [CrossRef]
  16. R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33, 695–701 (2011). [CrossRef]
  17. V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79, 590–592 (2001). [CrossRef]
  18. V. Lupei, T. Taira, A. Lupei, N. Pavel, I. Shoji, and A. Ikesue, “Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics,” Opt. Commun. 195, 225–232 (2001). [CrossRef]
  19. A. Ikesue, T. Yoda, S. Nakayama, and K. Yoshida, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (Optical Society of America, 2004), paper CTuT2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2004-CTuT2 .
  20. M. Dubinskii, L. D. Merkle, G. A. Newburgh, J. R. Goff, V. K. Castillo, and G. J. Quarles, “Laser studies of 8% Nd:YAG ceramic gain material,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 47. http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2005-47 .
  21. J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. part 2-letters 40, L1277–L1279 (2001). [CrossRef]
  22. A. Shirakawa, K. Takaichi, H. Yagi, J.-F. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. S. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11, 2911–2916 (2003). [CrossRef]
  23. Y. Qi, X. Zhu, Q. Lou, J. Ji, J. Dong, and Y. Wei, “Nd:YAG ceramic laser obtained high slope-efficiency of 62% in high power applications,” Opt. Express 13, 8725–8729 (2005). [CrossRef]
  24. D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped Ceramic Nd:YAG Laser,” Opt. Express 14, 2690–2694 (2006). [CrossRef]
  25. S. Lee, D. Choi, C.-J. Kim, and J. Zhou, “Highly efficient diode side-pumped Nd:YAG ceramic laser with 210 W output power,” Opt. Laser Technol. 39, 705–709 (2007). [CrossRef]
  26. C. Y. Li, Y. Bo, B. S. Wang, C. Y. Tian, Q. J. Peng, D. F. Cui, Z. Y. Xu, W. B. Liu, X. Q. Feng, and Y. B. Pan, “A kilowatt level diode-side-pumped QCW Nd:YAG ceramic laser,” Opt. Commun. 283, 5145–5148 (2010). [CrossRef]
  27. W. P. Latham, A. Lobad, T. C. Newell, and D. Stalnaker, “6.5 kW, Yb:YAG ceramic thin disk laser,” in Proceedings of the International Symposium on High Power Laser Ablation, C. R. Phipps, ed. (AIP, 2010), p. 758.
  28. A. Mandl, and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® laser program,” in Conference on Laser Electro-Optics: Applications, OSA Technical Digest (Optical Society of America, 2010), paper JThH2.
  29. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27, 716–718 (2002). [CrossRef]
  30. M. A. Kagan, and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33, 876–882 (2003). [CrossRef]
  31. I. B. Mukhin, O. V. Palashov, I. L. Snetkov, and E. A. Khazanov, “Thermally induced wavefront distortions in laser ceramics,” Proc. SPIE 6610, 66100N (2007). [CrossRef]
  32. I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Properties of a thermal lens in laser ceramics,” Quantum Electron. 37, 633–638 (2007). [CrossRef]
  33. J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Appl. Phys. 39, 1048–1050 (2000).
  34. H. M. Kahan, D. P. Stubbs, and R. V. Jones, “The potentialities of fine grained ceramics for optical and acoustical applications,” in Optical and Acoustical Micro-Electronics, J. Fox ed. (Polytechnic, 1975), pp. 185–204.
  35. R. V. Jones, “Light scattering in ceramics,” Proc. SPIE 362, 2–8 (1983). [CrossRef]
  36. W. Koechner, and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61, 758–766 (1971). [CrossRef]
  37. A. G. Vyatkin, and E. A. Khazanov, “Nonlinear thermally induced distortions of a laser beam in a cryogenic disk amplifier,” Quantum Electron. 39, 814–820 (2009). [CrossRef]
  38. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94 (2005). [CrossRef]
  39. L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements,” Sov. J. Quantum Electron. 9, 1506–1508 (1979). [CrossRef]
  40. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskiy, Vvedeniye v statisticheskuyu radiofiziku, Tom 2 [Introduction to Statistical Radiophysics, Vol. 2 (Nauka, 1978).
  41. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vols. I and II (Academic, 1978).
  42. A. G. Vyatkin and E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” Proc. SPIE 7994, 79940B (2011).
  43. J. Gallier, “Dirichlet-Voronoi diagrams and Delaunay triangulations,” in Geometric Methods and Applications for Computer Science and Engineering (Springer, 1998), pp. 267–286.
  44. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).
  45. F. W. Quelle, “Thermal distortion of diffraction-limited optical elements,” Appl. Opt. 5, 633–637 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited