OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3330–3334

Electromagnetic plane-wave force on a slab having various constitutive parameters and embedded in a background material

Shivanand and Kevin J. Webb  »View Author Affiliations

JOSA B, Vol. 29, Issue 12, pp. 3330-3334 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An exact theory describing the electromagnetic plane-wave force density on a scattering slab having various constitutive parameters and embedded in a background material with complex impedance is presented. It is shown that the constitutive parameters of the background medium contribute to the force density only through the impedance and not the refractive index. Asymptotic expressions show that the total force per unit area for sufficiently thick slabs having overall loss or gain remains positive, irrespective of the refractive index sign in the slab. However, example material responses indicate that for thin slabs the total force per unit area can be negative for both positive and negative refractive index slabs with gain.

© 2012 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:

Original Manuscript: July 12, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 17, 2012
Published: November 16, 2012

Shivanand and Kevin J. Webb, "Electromagnetic plane-wave force on a slab having various constitutive parameters and embedded in a background material," J. Opt. Soc. Am. B 29, 3330-3334 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Lorentz, The Theory of Electrons, 2nd ed. (Dover, 1952). These are notes from lectures given at Columbia University in the spring of 1906, as collected by H. A.Lorentz in 1909 and then in revised form in 1915.
  2. A. Einstein and J. Laub, “Über die im elektromagnetischen Felde auf ruhende Körper ausgübten ponderomotorischen Kräfte,” Ann. Phys. 331, 541–550 (1908). English commentary on this paper and a reprint of the original paper appears in The Collected Papers of Albert Einstein (Princeton University, 1989), Vol. 2. [CrossRef]
  3. P. Penfield and H. A. Haus, Electrodynamics of Moving Media (MIT, 1967).
  4. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973). [CrossRef]
  5. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979). [CrossRef]
  6. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375–5401 (2004). [CrossRef]
  7. R. Loudon, S. M. Barnett, and C. Baxter, “Radiation pressure and momentum transfer in dielectrics: the photon drag effect,” Phys. Rev. A 71, 063802 (2005). [CrossRef]
  8. R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Momentum of an electromagentic wave in dielectric media,” Rev. Mod. Phys. 79, 1197–1216 (2007). [CrossRef]
  9. B. A. Kemp, J. A. Kong, and T. M. Grzegorczyk, “Reversal of wave momentum in isotropic left-handed media,” Phys. Rev. A 75, 053810 (2007). [CrossRef]
  10. M. Mansuripur, “Resolution of the Abraham-Minkowski controversy,” Opt. Commun. 283, 1997–2005 (2010). [CrossRef]
  11. C. Baxter and R. Loudon, “Radiation pressure and photon momentum in dielectrics,” J. Mod. Opt. 57, 830–842 (2010). [CrossRef]
  12. S. M. Barnett, “Resolution of the Abraham-Minkowski dilemma,” Phys. Rev. Lett. 104, 070401 (2010). [CrossRef]
  13. K. J. Webb and Shivanand, “Negative electromagnetic plane-wave force in gain media,” Phys. Rev. E 84, 057602 (2011). [CrossRef]
  14. K. J. Webb and Shivanand, “Electromagnetic plane-wave forces on homogeneous material,” J. Opt. Soc. Am. B 29, 1904–1910 (2012).
  15. K. J. Chau and H. J. Lezec, “Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab,” Opt. Express 20, 10138–10162 (2012). [CrossRef]
  16. M. Mansuripur, “Trouble with the Lorentz law of force: incompatibility with special relativity and momentum conservation,” Phys. Rev. Lett. 108, 193901 (2012). [CrossRef]
  17. E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev. 17, 26–50 (1903). [CrossRef]
  18. R. V. Jones and B. Leslie, “The measurement of optical radiation pressure in dispersive media,” Proc. Roy. Soc. A 360, 347–363 (1978). [CrossRef]
  19. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  20. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  21. G. K. Campbell, A. E. Leanhardt, J. Mun, M. Boyd, E. W. Streed, W. Ketterle, and D. E. Pritchard, “Photon recoil momentum in dispersive media,” Phys. Rev. Lett. 94, 170403 (2005). [CrossRef]
  22. V. G. Veselagao, “Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction medium,” Phys. Usp. 52, 649–654 (2009). [CrossRef]
  23. V. Yannopapas and P. G. Galiatsatos, “Electromagnetic forces in negative-refractive-index metamaterials: a first-principles study,” Phys. Rev. A 77, 043819 (2008). [CrossRef]
  24. R. W. Ziolkowski, “Superluminal transmission of information through an electromagnetic metamaterial,” Phys. Rev. E 63, 046604 (2001). [CrossRef]
  25. R. Loudon and S. M. Barnett, “Theory of the radiation pressure on dielectric slabs, prisms and single surfaces,” Opt. Express 14, 11855–11869 (2006). [CrossRef]
  26. M. Mansuripur and A. R. Zakharian, “Energy, momentum, and force in classical electrodynamics: application to negative-index media,” Opt. Commun. 283, 4594–4600 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited