OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 965–969

Optical mass sensing with a carbon nanotube resonator

Jin-Jin Li, Cheng Jiang, Bin Chen, and Ka-Di Zhu  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 965-969 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (495 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrasensitively weighing nanoparticle masses is at the heart of modern measurement techniques. The traditional electrical mass measurement techniques, which are supported by external circuits, have been well known since the previous decade. In the present article, based on the all-optical technique, we propose a scheme of an optical sensor to weigh the masses of nanoparticles via a doubly clamped suspended carbon nanotube resonator. By measuring the resonance frequency shift of the nanotube in the probe absorption spectrum, we can easily determine the masses of external particles landing onto the surface of nanotube. This mass sensor may lead to a novel ultrasensitive measurement technique in nanoscience.

© 2012 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(270.1670) Quantum optics : Coherent optical effects
(300.6250) Spectroscopy : Spectroscopy, condensed matter

ToC Category:
Optical Devices

Original Manuscript: October 18, 2011
Revised Manuscript: February 5, 2012
Manuscript Accepted: February 6, 2012
Published: April 11, 2012

Jin-Jin Li, Cheng Jiang, Bin Chen, and Ka-Di Zhu, "Optical mass sensing with a carbon nanotube resonator," J. Opt. Soc. Am. B 29, 965-969 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004). [CrossRef]
  2. B. Domon and R. Aebersold, “Mass spectrometry and protein analysis,” Science 312, 212–217 (2006). [CrossRef]
  3. E. Gil-Santos, D. Ramos, A. Jana, M. Calleja, A. Raman, and J. Tamayo, “Mass sensing based on deterministic and stochastic responses of elastically coupled nanocantilevers,” Nano Lett. 9, 4122–4127 (2009). [CrossRef]
  4. K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass detection,” Appl. Phys. Lett. 84, 4469–4471 (2004). [CrossRef]
  5. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006). [CrossRef]
  6. K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotechnol. 3, 533–537 (2008). [CrossRef]
  7. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4, 445–450 (2009). [CrossRef]
  8. B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8, 3735–3738 (2008). [CrossRef]
  9. N. Sinha, J. Z. Ma, and J. T. W. Yeow, “Carbon nanotube based sensors,” J. Nanosci. Nanotechnol. 6, 573–590 (2006). [CrossRef]
  10. V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, T. A. Arias, and P. L. McEuen, “A tunable carbon nanotube electromechanical oscillator,” Nature 431, 284–287 (2004). [CrossRef]
  11. C. Y. Li and T. W. Chou, “Mass detection using carbon nanotube-based nanomechanical resonators,” Appl. Phys. Lett. 84, 5246–5248 (2004). [CrossRef]
  12. P. A. Greaney, G. Lani, G. Cicero, and J. C. Grossman, “Anomalous dissipation in single-walled carbon nanotube resonators,” Nano Lett. 9, 3699–3703 (2009). [CrossRef]
  13. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical system,” Rev. Sci. Instrum. 76, 061101 (2005). [CrossRef]
  14. K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58(7), 36–42 (2005). [CrossRef]
  15. J. J. Li and K. D. Zhu, “Plasmon-assisted mass sensing in a hybrid nanocrystal coupled to a nanomechanical resonator,” Phys. Rev. B 83, 245421 (2011). [CrossRef]
  16. C. Jiang, B. Chen, J. J. Li, and K. D. Zhu, “Mass sensing based on a circuit cavity electromechanical system” J. Appl. Phys. 110, 083107 (2011). [CrossRef]
  17. I. Wilson-Rae, C. Galland, W. Zwerger, and A. Imamoğlu, “Nano-optomechanics with localized carbon-nanotube excitons,” http://arxiv.org/abs/0911.1330 .
  18. R. W. Boyd, Nonlinear Optics (Academic, 2008), p. 313.
  19. J. J. Li and K. D. Zhu, “All-optical Kerr modulator based on a carbon nanotube resonator,” Phys. Rev. B 83, 115445 (2011). [CrossRef]
  20. K. F. Graff, Wave Motion in Elastic Solids (Dover, 1991), pp. 539–564.
  21. C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000) pp. 425–433.
  22. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994), pp. 245–265.
  23. I. Wilson-Rae, “Intrinsic dissipation in nanomechanical resonators due to phonon tunneling,” Phys. Rev. B 77, 245418 (2008). [CrossRef]
  24. V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001). [CrossRef]
  25. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, Ol. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]
  26. J. F. Lam, S. R. Forrest, and G. L. Tangonan, “Optical nonlinearities in crystalline organic multiple quantum wells,” Phys. Rev. Lett. 66, 1614–1617 (1991). [CrossRef]
  27. H. Y. Chiu, P. Hung, H. W. Ch. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8, 4342–4346 (2008). [CrossRef]
  28. K. L. Ekinci, Y. T. Tang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited