OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1894–1903

Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach

Umit Demirbas, Stefan Eggert, and Alfred Leitenstorfer  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 1894-1903 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001894


View Full Text Article

Enhanced HTML    Acrobat PDF (503 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we report a minimal-cost and minimal-complexity Cr:LiSAF laser that is pumped only by one inexpensive single-spatial-mode diode. The pump diode, which was originally developed for DVD-writers, provides 130 mW of output power at 660 nm with an efficiency of 30%. This simple pump source enables the construction of a Cr:LiSAF laser that (i) has an estimated total material cost below US$ 5k, (ii) has a footprint of about 20 × 30 cm , (iii) does not require active cooling, and (iv) can be driven by batteries. All of these make this system ideal for applications that require portability. In continuous-wave (cw) laser experiments, we have demonstrated lasing thresholds as low as 2 mW, slope efficiencies as high as 52%, and output powers up to 58 mW. A record cw tuning range extending from 780 to 1110 nm has also been obtained. In cw mode-locking experiments using a saturable Bragg reflector at 850 nm, the Cr:LiSAF laser produced 100 fs pulses with an average power of 38 mW at a repetition rate of 235 MHz. Using a more compact laser cavity, we have also obtained 130 fs pulses with an average power of 33 mW at a repetition rate of 757 MHz. The corresponding electrical-to-optical conversion efficiencies in cw and cw mode-locked regimes were 12.8% and 8.4%, respectively. These results show that, with the progress in laser-diode and optical mirror technology in the last decade, reasonable output powers can now be obtained from Cr:LiSAF lasers that are pumped only by one single-spatial-mode diode. We believe that this compact, low-cost, and simplistic Cr:LiSAF laser system may be an attractive source for several applications including amplifier seeding.

© 2012 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 12, 2012
Revised Manuscript: May 17, 2012
Manuscript Accepted: May 22, 2012
Published: July 9, 2012

Citation
Umit Demirbas, Stefan Eggert, and Alfred Leitenstorfer, "Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach," J. Opt. Soc. Am. B 29, 1894-1903 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-1894


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Klein and J. D. Kafka, “The Ti:Sapphire laser: the flexible research tool,” Nat. Photon. 4, 289 (2010). [CrossRef]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef]
  3. S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett. 69, 1538–1540 (1996). [CrossRef]
  4. G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett. 22, 1639–1641 (1997). [CrossRef]
  5. A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12, 3928–3933 (2004). [CrossRef]
  6. A. A. Lagatsky, E. U. Rafailov, C. G. Leburn, C. T. A. Brown, N. Xiang, O. G. Okhotnikov, and W. Sibbett, “Highly efficient femtosecond Yb:KYW laser pumped by single narrow-stripe laser diode,” Electron. Lett. 39, 1108–1110 (2003). [CrossRef]
  7. F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” Comptes Rendus Physique 8, 153–164 (2007). [CrossRef]
  8. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Ka¨rtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17, 14374–14388 (2009). [CrossRef]
  9. A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “80 fs Nd: silicate glass laser pumped by a single-mode 200 mW diode,” Opt. Express 18, 10098–10103 (2010). [CrossRef]
  10. P. Purnawirman and P. B. Phua, “Femtosecond laser pumped by high-brightness coherent polarization locked diodes,” Opt. Lett. 36, 2797–2799 (2011). [CrossRef]
  11. W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express 20, 6989–7001 (2012). [CrossRef]
  12. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  13. J. Harrison, A. Finch, D. M. Rines, G. A. Rines, and P. F. Moulton, “Low-threshold, cw, all-solid-state Ti:Al2O3 laser,” Opt. Lett. 16, 581–583 (1991). [CrossRef]
  14. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 5 fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–375 (2001). [CrossRef]
  15. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34, 3334–3336 (2009). [CrossRef]
  16. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Direct diode-laser pumping of a mode-locked Ti:Sapphire laser,” Opt. Lett. 36, 304–306 (2011). [CrossRef]
  17. A. Agnesi, F. Pirzio, and G. Reali, “Low-threshold femtosecond Nd:glass laser,” Opt. Express 17, 9171–9176 (2009). [CrossRef]
  18. C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69, 3–17 (1999). [CrossRef]
  19. A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. H. Liu, H. J. Zhang, J. Y. Wang, and U. Griebner, “Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses,” Opt. Lett. 36, 4425–4427 (2011). [CrossRef]
  20. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010). [CrossRef]
  21. F. G. Patterson, R. Gonzales, and M. D. Perry, “Compact 10-TW, 800 fs Nd:glass laser,” Opt. Lett. 16, 1107–1109 (1991). [CrossRef]
  22. M. Larionov, F. Butze, D. Nickel, and A. Giesen, “High-repetition-rate regenerative thin-disk amplifier with 116 mu J pulse energy and 250 fs pulse duration,” Opt. Lett. 32, 494–496 (2007). [CrossRef]
  23. M. Hildebrandt, M. Frede, and D. Kracht, “Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power,” Opt. Lett. 32, 2345–2347 (2007). [CrossRef]
  24. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989). [CrossRef]
  25. S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Jpn. J. Appl. Phys. 39, 3472–3473 (2000). [CrossRef]
  26. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF6 laser,” Opt. Lett. 16, 820–822 (1991). [CrossRef]
  27. J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun. 154, 54–58 (1998). [CrossRef]
  28. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun. 205, 207–213 (2002). [CrossRef]
  29. J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr:LiSAF lasers,” IEEE J. Quantum Electron. 38, 360–368 (2002). [CrossRef]
  30. U. Demirbas, G. S. Petrich, D. Li, A. Sennaroglu, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Femtosecond tuning of Cr:Colquiriite lasers with AlGaAs-based saturable Bragg reflectors,” J. Opt. Soc. Am. B 28, 986–993 (2011). [CrossRef]
  31. P. M. W. French, R. Mellish, J. R. Taylor, P. J. Delfyett, and L. T. Florez, “Mode-locked all-solid-state diode-pumped Cr:LiSAF Laser,” Opt. Lett. 18, 1934–1936 (1993). [CrossRef]
  32. A. Isemann and C. Fallnich, “High-power colquiriite laser with high slope efficiencies pumped by broad-area laser diodes.,” Opt. Express 11, 259–264 (2003). [CrossRef]
  33. U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, “Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers,” Opt. Express 19, 20444–20461 (2011). [CrossRef]
  34. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65, 235–243 (1997). [CrossRef]
  35. A. J. Kemp, B. Stormont, B. Agate, C. T. A. Brown, U. Keller, and W. Sibbett, “Gigahertz repetition-rate from directly diode-pumped femtosecond Cr:LiSAF laser,” Electron. Lett. 37, 1457–1458 (2001). [CrossRef]
  36. B. Agate, A. J. Kemp, C. T. A. Brown, and W. Sibbett, “Efficient, high repetition-rate femtosecond blue source using a compact Cr:LiSAF laser,” Opt. Express 10, 824–831 (2002).
  37. R. P. Prasankumar, Y. Hirakawa, A. M. J. Kowalevicz, F. X. Kärtner, J. G. Fujitimo, and W. H. Knox, “An extended cavity femtosecond Cr:LiSAF laser pumped by low cost diode lasers,” Opt. Express 11, 1265–1269 (2003). [CrossRef]
  38. D. Li, U. Demirbas, J. R. Birge, G. S. Petrich, L. A. Kolodziejski, A. Sennaroglu, F. X. Ka¨rtner, and J. G. Fujimoto, “Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power,” Opt. Lett. 35, 1446–1448 (2010). [CrossRef]
  39. A. Isemann, H. Hundertmark, and C. Fallnich, “Diode-pumped Cr:LiCAF fs regenerative amplifier system seeded by an Er-doped mode-locked fiber laser,” Appl. Phys. B 74, 299–306 (2002). [CrossRef]
  40. A. Isemann, P. Wessels, and C. Fallnich, “Directly diode-pumped Colquiriite regenerative amplifiers,” Opt. Commun. 260, 211–222 (2006). [CrossRef]
  41. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996). [CrossRef]
  42. U. Keller, K. J. Weingarten, F. X. Ka¨rtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). [CrossRef]
  43. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966). [CrossRef]
  44. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988). [CrossRef]
  45. M. Stalder, B. H. T. Chai, and M. Bass, “Flashlamp pumped Cr:LiSrAIF6 laser,” Appl. Phys. Lett. 58, 216–218 (1991). [CrossRef]
  46. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Top. Quantum Electron. 1, 58–61 (1995). [CrossRef]
  47. R. Knappe, G. Bitz, K.-J. Boller, and R. Wallenstein, “Compact single-frequency diode-pumped Cr:LiSAF lasers,” Opt. Commun. 143, 42–46 (1997). [CrossRef]
  48. U. Demirbas and A. Sennaroglu, “Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm,” Opt. Lett. 31, 2293–2295 (2006). [CrossRef]
  49. S. Uemura and K. Torizuka, “Development of a diode-pumped kerr-lens mode-locked Cr.LiSAF Laser,” IEEE J. Quantum Electron. 39, 68–73 (2003). [CrossRef]
  50. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, “14 fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716–1718 (1997). [CrossRef]
  51. L. G. DeShazer and K. W. Kangas, “Extended infrared operation of titanium sapphire laser,” in Conference on Lasers and Electro Optics (IEEE, 1987), pp. 296–298.
  52. E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in OSA/ASSP/LACSEA/LS (OSA, 2010).
  53. I. T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K. I. Schaffers, “Broadly tunable compact continuous-wave Cr2+:ZnS laser,” Opt. Lett. 27, 1040–1042 (2002). [CrossRef]
  54. J. McKay, K. L. Schepler, and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Opt. Lett. 24, 1575–1577 (1999). [CrossRef]
  55. V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and A. A. Voronov, “Pulsed broadly tunable room-temperature Cr2+:CdS laser,” Appl. Phys. B 97, 793–797 (2009). [CrossRef]
  56. V. A. Akimov, V. I. Kozovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61,” Quantum Electron. 38, 205–208(2008). [CrossRef]
  57. J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, and V. V. Badikov, “3.9–4.8 μm gain-switched lasing of Fe:ZnSe at room temperature,” Opt. Express 13, 10608–10615 (2005). [CrossRef]
  58. D. Welford and P. F. Moulton, “Romm-temperature operation of a Co:MgF2 laser,” Opt. Lett. 13, 975–977 (1988). [CrossRef]
  59. P. Laperle, K. J. Snell, A. Chandonnet, P. Galarneau, and R. Vallée, “Tunable diode-pumped and frequency-doubled Cr:LiSAF lasers,” Appl. Opt. 36, 5053–5057 (1997). [CrossRef]
  60. F. Falcoz, F. Balembois, P. Georges, A. Brun, and D. Rytz, “All-solid-state continuous-wave tunable blue-light source by intracavity doubling of a diode-pumped Cr:LiSAF laser,” Opt. Lett. 20, 1274–1276 (1995). [CrossRef]
  61. J. M. Eichenholz, M. Richardson, and G. Mizell, “Diode pumped, frequency doubled LiSAF microlaser,” Opt. Commun. 153, 263–266 (1998). [CrossRef]
  62. S. Makio, H. Matsumoto, A. Miyamoto, M. Sato, and T. Sasaki, “Low-noise blue light generation of intracavity frequency-doubled LD-pumped Cr:LiSAF laser by single-mode method,” Electr. Eng. Jpn. 138, 49–55 (2002). [CrossRef]
  63. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999). [CrossRef]
  64. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995). [CrossRef]
  65. U. Demirbas, A. Sennaroglu, F. X. Ka¨rtner, and J. G. Fujimoto, “Comparative investigation of diode pumping for continuous-wave and mode-locked Cr3+:LiCAF lasers,” J. Opt. Soc. Am. B 26, 64–79 (2009). [CrossRef]
  66. F. Balembois, P. Georges, and A. Brun, “Quasi-continuous-wave and actively mode-locked diode-pumped Cr3+:LiSrAlF6 laser,” Opt. Lett. 18, 1730–1732 (1993). [CrossRef]
  67. D. Kopf, K. J. Weingarten, L. R. Brovelli, M. Kamp, and U. Keller, “Diode-pumped 100 fs passively mode-locked Cr-Lisaf laser with an antiresonant Fabry-Perot saturable absorber,” Opt. Lett. 19, 2143–2145 (1994). [CrossRef]
  68. M. J. P. Dymott and A. I. Ferguson, “Self-mode-locked diode-pumped Cr:LiSAF laser,” Opt. Lett. 19, 1988–1990 (1994). [CrossRef]
  69. F. Falcoz, F. Balembois, P. Georges, and A. Brun, “Self-starting self-mode-locked femtosecond diode-pumped Cr:LiSAF laser,” Opt. Lett. 20, 1874–1876 (1995). [CrossRef]
  70. R. Mellish, N. P. Barry, S. C. W. Hyde, R. Jones, P. M. W. French, J. R. Taylor, C. J. v. d. Poel, and A. Valster, “Diode-pumped Cr:LiSAF all-solid-state femtosecond oscillator and regenerative amplifier,” Opt. Lett. 20, 2312–2314 (1995). [CrossRef]
  71. M. J. P. Dymott and A. I. Ferguson, “Self-mode-locked diode-pumped Cr:LiSAF laser producing 34 fs pulses at 42 mW average power,” Opt. Lett. 20, 1157–1159 (1995). [CrossRef]
  72. S. Tsuda, W. H. Knox, E. A. d. Souza, W. Y. Jan, and J. E. Cunningham, “Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond mode locking in solid-state lasers,” Opt. Lett. 20, 1406–1408 (1995). [CrossRef]
  73. D. Kopf, A. Prasad, G. Zhang, M. Moser, and U. Keller, “Broadly tunable femtosecond Cr:LiSAF laser,” Opt. Lett. 22, 621–623 (1997). [CrossRef]
  74. S. Uemura and K. Miyazaki, “Femtosecond Cr:LiSAF laser pumped by a single diode laser,” Opt. Commun. 138, 330–332 (1997). [CrossRef]
  75. A. Robertson, R. Knappe, and R. Wallenstein, “Diode-pumped broadly tunable (809–910 nm) femtosecond Cr:LiSAF laser,” Opt. Commun. 147, 294–298 (1998). [CrossRef]
  76. S. Uemeura and K. Torizuka, “Generation of 12 fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Opt. Lett. 24, 780–782 (1999). [CrossRef]
  77. U. Demirbas, A. Sennaroglu, F. X. Ka¨rtner, and J. G. Fujimoto, “Generation of 15 nJ pulses from a highly efficient, low-cost multipass-cavity Cr3+:LiCAF laser,” Opt. Lett. 34, 497–499 (2009). [CrossRef]
  78. A. Sennaroglu and J. G. Fujimoto, “Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers,” Opt. Express 11, 1106–1113 (2003). [CrossRef]
  79. A. Killi, U. Morgner, M. J. Lederer, and D. Kopf, “Diode-pumped femtosecond laser oscillator with cavity dumping,” Opt. Lett. 29, 1288–1290 (2004). [CrossRef]
  80. U. Demirbas, K. H. Hong, J. G. Fujimoto, A. Sennaroglu, and F. X. Ka¨rtner, “Low-cost cavity-dumped femtosecond Cr:LiSAF laser producing >100  nJ pulses,” Opt. Lett. 35, 607–609 (2010). [CrossRef]
  81. S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett. 29, 2551–2553 (2004). [CrossRef]
  82. L.-J. Chen, M. Y. Sander, and F. X. Kärtner, “Kerr-lens mode locking with minimum nonlinearity using gain-matched output couplers,” Opt. Lett. 35, 2916–2918 (2010). [CrossRef]
  83. A. Agnesi, F. Pirzio, E. Ugolotti, S. Y. Choi, D.-I. Yeom, and F. Rotermund, “Femtosecond single-mode diode-pumped Cr:LiSAF laser mode-locked with single-walled carbon nanotubes,” Opt. Commun. 285, 742–745 (2012). [CrossRef]
  84. V. G. Savitski, N. K. Metzger, S. Calvez, D. Burns, W. Sibbett, and C. T. A. Brown, “Optical trapping with “on-demand” two-photon luminescence using Cr:LiSAF laser with optically addressed saturable Bragg reflector,” Opt. Express 20, 7066–7070 (2012). [CrossRef]
  85. D. Parsons-Karavassilis, Y. Gu, Z. Ansari, P. M. W. French, and J. R. Taylor, “Diode-pumped spatially dispersed broadband Cr:LiSGAF and Cr:LiSAF c.w. laser sources applied to short-coherence photorefractive holography,” Opt. Commun. 181, 361–367 (2000). [CrossRef]
  86. P. C. Wagenblast, T. H. Ko, J. G. Fujimoto, F. X. Kaertner, and U. Morgner, “Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+:LiCAF laser,” Opt. Express 12, 3257–3263 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited