OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2029–2034

Robust teleportation and multipartite entanglement analyzers via quantum-dot spins in weak-coupling cavity quantum electrodynamics regime

Tao Yu, Yan-Qiang Ji, Ai-Dong Zhu, Hong-Fu Wang, and Shou Zhang  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2029-2034 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (643 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a special conditional phase gate (CPG) U^(π/2) between the photon and the electron spin confined in a quantum dot (QD) embedded in a microcavity operating in the weak-coupling regime. This CPG U^(π/2) provides an optical method to manipulate the QDs with photon parity. By using it, we present a scheme for implementing a state teleportation between two remote QD cavities and a scheme for constructing a photonic Bell-state analyzer. Furthermore, a multipartite Greenberger–Horne–Zeilinger state analyzer is also proposed. This multipartite entanglement analyzer can also be used as a multipartite entanglement generator. All these schemes are operated in the weak-coupling regime, so the high fidelities and efficiencies can be maintained even in the case of a bad cavity, and the schemes are accessible with current technologies.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 16, 2012
Revised Manuscript: June 5, 2012
Manuscript Accepted: June 6, 2012
Published: July 18, 2012

Tao Yu, Yan-Qiang Ji, Ai-Dong Zhu, Hong-Fu Wang, and Shou Zhang, "Robust teleportation and multipartite entanglement analyzers via quantum-dot spins in weak-coupling cavity quantum electrodynamics regime," J. Opt. Soc. Am. B 29, 2029-2034 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  3. A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999). [CrossRef]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  5. K. Shimizu, N. Imoto, and T. Mukai, “Dense coding in photonic quantum communication with enhanced information capacity,” Phys. Rev. A 59, 1092–1097 (1999). [CrossRef]
  6. X. L. Zhang, M. Feng, and K. L. Gao, “Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED,” Phys. Rev. A 74, 024303 (2006). [CrossRef]
  7. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010). [CrossRef]
  8. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011). [CrossRef]
  9. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]
  10. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904 (2004). [CrossRef]
  11. C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M. Kindermann, “Charge detection enables free-electron quantum computation,” Phys. Rev. Lett. 93, 020501 (2004). [CrossRef]
  12. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998). [CrossRef]
  13. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999). [CrossRef]
  14. Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008). [CrossRef]
  15. X. Hao and S. Q. Zhu, “Quantum computation in semiconductor quantum dots of electron-spin asymmetric anisotropic exchange,” Phys. Rev. A 76, 044306 (2007). [CrossRef]
  16. E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, “Spin-based optical quantum computation via Pauli blocking in semiconductor quantum dots,” Europhys. Lett. 62, 175–181 (2003). [CrossRef]
  17. P. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel, “Theory of quantum optical control of a single spin in a quantum dot,” Phys. Rev. B 69, 075320 (2004). [CrossRef]
  18. J. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30, 2001–2003 (2005). [CrossRef]
  19. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006). [CrossRef]
  20. A. Auffèves-Garnier, C. Simon, J.-M. Gérard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007). [CrossRef]
  21. M. N. Leuenberger, M. E. Flatté, and D. D. Awschalom, “Teleportation of electronic many-qubit states encoded in the electron spin of quantum dots via single photons,” Phys. Rev. Lett. 94, 107401 (2005). [CrossRef]
  22. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  23. N. Gisin, I. Marcikic, H. de Riedmatten, W. Tittel, and H. Zbinden, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003). [CrossRef]
  24. Y. H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001). [CrossRef]
  25. Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009). [CrossRef]
  26. H. Wei, W. L. Yang, Z. J. Deng, and M. Feng, “Many-qubit network employing cavity QED in a decoherence-free subspace,” Phys. Rev. A 78, 014304 (2008). [CrossRef]
  27. H. Wei, Z. J. Deng, X. L. Zhang, and M. Feng, “Transfer and teleportation of quantum states encoded in decoherence-free subspace,” Phys. Rev. A 76, 054304 (2007). [CrossRef]
  28. D. Press, K. D. Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photon. 4, 367–370 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited