OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2053–2059

Great optical buffering capacity for optical delay line and extraordinary optical reflection and mode conversion with extremely weak dielectric perturbations based on circular Bragg resonators

Ken Liu, Wei Min Ye, Wei Xu, Xiao Dong Yuan, Zhi Hong Zhu, and Chun Zeng  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 2053-2059 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002053


View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Circular Bragg resonators (CBRs) are analyzed in both the frequency domain and the time domain based on the scattering matrix method and the numerical model. The CBR with the same size as a dielectric ring can be designed to have denser resonant mode distributions in the frequency domain, and the expansion of the slow light band is imposed by the combination of multiresonant modes. Thus the expansion is independent of group velocity and is not limited by the delay-bandwidth product constraint in static photonic structures, which is deduced for a single resonant mode. Hence, the CBR can store more bits than a dielectric ring. For certain parameters, clockwise (CW) and counterclockwise (CCW) modes in the CBR are quite sensitive to dielectric perturbations, which are weak enough that they have little effect on the CW mode and CCW mode in a dielectric ring. When light propagates along a line waveguide coupled with the CBR, and if there are weak dielectric perturbations in the CBRs, extraordinary reflections could be produced and there exists strong coupling and conversion between CW and CCW modes in the CBR. The optical property indicates that extremely weak dielectric perturbations in the CBR play an important role in mode conversion. These unique properties of CBRs may find applications in the design of practical optical delay line buffers, and they also provide a new method to achieve light control by mode conversion in passive optical resonators.

© 2012 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.3120) Optical devices : Integrated optics devices
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

History
Original Manuscript: January 3, 2012
Revised Manuscript: May 17, 2012
Manuscript Accepted: June 2, 2012
Published: July 19, 2012

Citation
Ken Liu, Wei Min Ye, Wei Xu, Xiao Dong Yuan, Zhi Hong Zhu, and Chun Zeng, "Great optical buffering capacity for optical delay line and extraordinary optical reflection and mode conversion with extremely weak dielectric perturbations based on circular Bragg resonators," J. Opt. Soc. Am. B 29, 2053-2059 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-2053


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photon. 1, 65–71 (2007). [CrossRef]
  2. L. Chen, N. S. Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32, 3361–3363 (2007). [CrossRef]
  3. J. E. Heebner and R. W. Boyd, “ ‘Slow’ and ‘fast’ light in resonator-coupled waveguides,” J. Mod. Opt. 49, 2629–2636 (2002). [CrossRef]
  4. J. B. Khurgin and P. A. Morton, “Tunable wideband optical delay line based on balanced coupled resonator structures,” Opt. Lett. 34, 2655–2657 (2009). [CrossRef]
  5. J. B. Khurgin, “Dispersion and loss limitations on the performance of optical delay lines based on coupled resonant structures,” Opt. Lett. 32, 163–165 (2007). [CrossRef]
  6. M. F. Yanik, W. Suh, Z. Wang, and S. H. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004). [CrossRef]
  7. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406–410 (2007). [CrossRef]
  8. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978). [CrossRef]
  9. M. Toda, “Single-mode behavior of a circular grating for potential disk-shaped DFB lasers,” IEEE J. Quantum Electron. 26, 473–481 (1990). [CrossRef]
  10. T. Erdogan and D. G. Hall, “Circularly symmetric distributed feedback semiconductor laser: an analysis,” J. Appl. Phys. 68, 1435–1444 (1990). [CrossRef]
  11. A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, “Lasing properties of disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999). [CrossRef]
  12. J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, “InGaAsP annular Bragg lasers: theory, applications and modal properties,” IEEE J. Sel. Top. Quantum Electron. 11, 476–484 (2005). [CrossRef]
  13. M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, and G. S. Sokolovski, “Bragg reflectors for cylindrical waves,” J. Mod. Opt. 46, 875–890 (1999). [CrossRef]
  14. J. Scheuer and A. Yariv, “Annular Bragg defect mode resonators,” J. Opt. Soc. Am. B 20, 2285–2291 (2003). [CrossRef]
  15. D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988). [CrossRef]
  16. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999). [CrossRef]
  17. K. Liu, X. D. Yuan, W. M. Ye, J. R. Ji, M. Zeng, and C. Zeng, “Optical filter based on omnidirectional reflectors,” Appl. Phys. B 82, 391–393 (2006). [CrossRef]
  18. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willne, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33, 1978–1980 (2008). [CrossRef]
  19. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  20. Q. Li, F. Liu, Z. Zhang, M. Qiu, and Yikai Su, “System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals,” J. Lightwave Technol. 26, 3744–3751 (2008). [CrossRef]
  21. M. T. Hill, H. J. S. Dorren1, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. Oei, H. Binsma, G. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209 (2004). [CrossRef]
  22. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. Geluk, T. de Vries, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photon. 4, 182–187 (2010). [CrossRef]
  23. S. Schonenberger, N. Moll, T. Stoferle, R. F. Mahrt, B. J. Offrein, S. Gotzinger, V. Sandoghdar, J. Bolten, T. Wahlbrink, T. Plotzing, M. Waldow, and M. Forst, “Circular grating resonators as small mode-volume microcavities for switching,” Opt. Express 17, 5953–5964 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (752 KB)     
» Media 2: MPG (752 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited