OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2060–2065

Decay of quantum correlation under different non-Markovian environmental models

Ying-jie Zhang, Wei Han, Chuan-jia Shan, and Yun-jie Xia  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2060-2065 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (817 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the roles of different environmental models on quantum correlation decay behavior of a two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lorentzian model, the two-Lorentzian model and bandgap model) are analyzed. First, we note that, for the weak coupling regime, the monotonic decay speed of the quantum correlation is mainly determined by the spectral density functions of these different environments. Then, by considering the strong coupling regime we find that, contrary to what is stated in the weak coupling regime, the dynamics of quantum correlation primarily depends on the non-Markovianity of the environmental models.

© 2012 Optical Society of America

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: March 22, 2012
Manuscript Accepted: May 27, 2012
Published: July 19, 2012

Ying-jie Zhang, Wei Han, Chuan-jia Shan, and Yun-jie Xia, "Decay of quantum correlation under different non-Markovian environmental models," J. Opt. Soc. Am. B 29, 2060-2065 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Vedral, “Classical correlations and entanglement in quantum measurements,” Phys. Rev. Lett. 90, 050401 (2003). [CrossRef]
  2. S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A 77, 042303 (2008). [CrossRef]
  3. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002). [CrossRef]
  4. A. Datta, A. Shaji, and C. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008). [CrossRef]
  5. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008). [CrossRef]
  6. A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have non-classical correlations” (2010), http://arxiv.org/abs/0908.3157v2 .
  7. J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, “Classical and quantum correlations under decoherence,” Phys. Rev. A 80, 044102 (2009). [CrossRef]
  8. J. Maziero, T. Werlang, F. F. Fanchini, L. C. Celeri, and R. M. Serra, “System-reservoir dynamics of quantum and classical correlations,” Phys. Rev. A 81, 022116 (2010). [CrossRef]
  9. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009). [CrossRef]
  10. Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Quantum discord dynamics in the presence of initial system-cavity correlations,” J. Phys. B 44, 035503 (2011). [CrossRef]
  11. Y. J. Zhang, X. B. Zou, Y. J. Xia, and G. C. Guo, “Different entanglement dynamical behaviors due to initial system-environment correlations,” Phys. Rev. A 82, 022108 (2010). [CrossRef]
  12. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004). [CrossRef]
  13. T. Yu and J. H. Eberly, “Entanglement sudden death,” Science 323, 598–601 (2009). [CrossRef]
  14. B. Bellomo, R. L. Franco, and G. Compagno, “Non-Markovian effects on the dynamics of entanglement,” Phys. Rev. Lett. 99, 160502 (2007). [CrossRef]
  15. S. Maniscalco, F. Francia, R. L. Zaffino, N. L. Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008). [CrossRef]
  16. B. Bellomo, R. L. Franco, S. Maniscalco, and G. Compagno, “Entanglement trapping in structured environments,” Phys. Rev. A 78, 060302(R) (2008). [CrossRef]
  17. Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008). [CrossRef]
  18. C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008). [CrossRef]
  19. L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010). [CrossRef]
  20. L. Mazzola, J. Piilo, and S. Maniscalco, “Frozen discord in non-Markovian dephasing channels” (2010), http://arxiv.org/abs/1006.1805v1 .
  21. J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6 (2010). [CrossRef]
  22. B. M. Garraway, “Decay of an atom coupled strongly to a reservoir,” Phys. Rev. A 55, 4636–4639 (1997). [CrossRef]
  23. B. M. Garraway, “Nonperturbative decay of an atomic system in a cavity,” Phys. Rev. A 55, 2290–2303 (1997). [CrossRef]
  24. L. Mazzola, S. Maniscalco, J. Piilo, K. A. Suominen, and B. M. Garraway, “Sudden death and sudden birth of entanglement in common structured reservoirs,” Phys. Rev. A 79, 042302 (2009). [CrossRef]
  25. M. Ali, A. R. P. Rau, and G. Alber, “Quantum discord for two-qubit X states,” Phys. Rev. A 81, 042105 (2010). [CrossRef]
  26. H. P. Breuer, E. M. Laine, and J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems,” Phys. Rev. Lett. 103, 210401 (2009). [CrossRef]
  27. Z. He, J. Zou, L. Li, and B. Shao, “Effective method of calculating the non-Markovianity N for single-channel open systems,” Phys. Rev. A 83, 012108 (2011). [CrossRef]
  28. A. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and non-Markovianity of quantum evolutions,” Phys. Rev. Lett. 105, 050403 (2010). [CrossRef]
  29. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited