OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2103–2109

Surface guided modes in photonic crystal ridges: the good, the bad, and the ugly

Marco Liscidini  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2103-2109 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss the existence and the optical properties of guided modes in photonic crystal ridges, where light confinement relies on a photonic band gap in the direction of the substrate and on total internal reflectance in the other directions. Photonic crystal ridges are known to support guided surface waves, but here we show that at least three different guided modes can be identified, and only one of them seems to possess all the characteristics of a proper guided surface wave. We also discuss the use of effective index approaches to drastically simplify the modeling of such modes. Photonics crystal ridges are already recognized as promising platforms in the field of optical sensing and for the study of the light–matter interaction at the fundamental level, and our results should be of use in exploiting the potential of these structures for the confinement and control of light.

© 2012 Optical Society of America

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(240.6690) Optics at surfaces : Surface waves
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optical Devices

Original Manuscript: April 24, 2012
Revised Manuscript: June 20, 2012
Manuscript Accepted: June 20, 2012
Published: July 23, 2012

Marco Liscidini, "Surface guided modes in photonic crystal ridges: the good, the bad, and the ugly," J. Opt. Soc. Am. B 29, 2103-2109 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature 421, 509–513 (2003). [CrossRef]
  2. F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17, 423–425 (1970). [CrossRef]
  3. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. OFaolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36, 3413–3415 (2011). [CrossRef]
  4. E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lematre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010). [CrossRef]
  5. A. Yariv and P. Yeh, Photonics (Oxford University, 2007).
  6. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, (Princeton University, 1st ed.: 1995, 2nd ed.: 2008).
  7. I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett. 24, 622–625 (1974). [CrossRef]
  8. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef]
  9. S. J. McNab, N. Moll, and Yu. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003). [CrossRef]
  10. Y. A. Valsov, N. Moll, and S. J. McNab, “Observation of surface states in a truncated photonic crystal slab,” Opt. Lett. 29, 2175–2177 (2004). [CrossRef]
  11. P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976). [CrossRef]
  12. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultra-thin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [CrossRef]
  13. M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett. 98, 121118–121120 (2011). [CrossRef]
  14. J. M. Gerard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett. 69, 449–451 (1996). [CrossRef]
  15. M. Liscidini and J. E. Sipe, “Analysis of Bloch-surface-wave assisted diffraction-based biosensors,” J. Opt. Soc. Am. B 26, 279–289 (2009). [CrossRef]
  16. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–106 (1978). [CrossRef]
  17. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999). [CrossRef]
  18. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 035324 (2008). [CrossRef]
  19. P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38, 731–759 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited