OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2138–2146

Influence of energy transfer upconversion on thermal lens of Nd:YVO4 bounce laser amplifier

Ştefan A. Amarande  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2138-2146 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (818 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Detrimental thermal effects affecting optical performances of a Nd:YVO4 bounce laser amplifier are investigated numerically under small-signal gain conditions. Thermally induced lens is stronger due to the increase of the fractional thermal loading with the pump irradiance, which is caused by the Auger energy-transfer upconversion (ETU). At a pump power of 100 W, the focal length of the thermal lens (TL) is comparable to the length of the laser crystal and is shorter than without Auger ETU by a factor of 3 and 2.5 in the bounce plane and, respectively, in the plane orthogonal to bounce. This deleterious influence of Auger ETU on the TL of the bounce laser amplifier can be alleviated by the increase of the pump spot area and by the mismatch between the diode pump spectrum and the absorption band of the crystal.

© 2012 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.6810) Lasers and laser optics : Thermal effects
(350.6830) Other areas of optics : Thermal lensing
(140.3613) Lasers and laser optics : Lasers, upconversion

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 23, 2012
Revised Manuscript: June 16, 2012
Manuscript Accepted: June 20, 2012
Published: July 27, 2012

Ştefan A. Amarande, "Influence of energy transfer upconversion on thermal lens of Nd:YVO4 bounce laser amplifier," J. Opt. Soc. Am. B 29, 2138-2146 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Huber, C. Kränkel, and K. Petermann, “Solid-state lasers: status and future,” J. Opt. Soc. Am. B 27, B93–B105 (2010). [CrossRef]
  2. W. Koechner, Solid State Lasers Engineering (Springer, 2006), pp. 474–477.
  3. M. K. Reed, W. J. Kozlowski, R. L. Byer, G. L. Harnagel, and P. S. Cross, “Diode-laser-array-pumped neodymium slab oscillator,” Opt. Lett. 13, 204–206 (1988). [CrossRef]
  4. J. E. Bernard and A. J. Alcock, “High-efficiency diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 18, 968–970 (1993). [CrossRef]
  5. J. E. Bernard, E. McCullough, and A. J. Alcock, “High gain, diode-pumped Nd:YVO4 slab amplifier,” Opt. Commun. 109, 109–114 (1994). [CrossRef]
  6. M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 W output power and 68% conversion efficiency,” Opt. Commun. 196, 237–241 (2001). [CrossRef]
  7. A. Minassian, B. A. Thompson, and M. J. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76, 341–343 (2003). [CrossRef]
  8. A. Minassian and M. J. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230, 191–195 (2004). [CrossRef]
  9. A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621–625 (2005). [CrossRef]
  10. A. Minassian, B. A. Thompson, and M. J. Damzen, “High-power TEM00 grazing-incidence Nd:YVO4 oscillators in single and multiple bounce configurations,” Opt. Commun. 245, 295–300 (2005).
  11. T. Omatsu, Y. Ojima, A. Minassian, and M. J. Damzen, “Power scaling of a highly neodymium-doped YAG ceramic lasers with a bounce amplifier geometry,” Opt. Express 13, 7011–7016 (2005). [CrossRef]
  12. S. P. Chard and M. J. Damzen, “Compact architecture for power scaling bounce geometry lasers,” Opt. Express 17, 2218–2223 (2009). [CrossRef]
  13. K. Nawata, M. Okida, K. Furuki, K. Miyamoto, and T. Omatsu, “Sub-100 W picosecond output from a phase-conjugate Nd:YVO4 bounce amplifier,” Opt. Express 17, 20816–20823 (2009). [CrossRef]
  14. A. Agnesi and F. Pirzio, “High gain solid-state amplifiers for picosecond pulses,” in Advances in Solid-State Lasers: Development and Applications, M. Grishin, ed. (INTECH, 2010), Chap. 11.
  15. Ş. A. Amarande and M. J. Damzen, “Measurement of thermal lens of grazing-incidence diode-pumped Nd:YVO4 laser amplifier,” Opt. Commun. 265, 306–313 (2006). [CrossRef]
  16. M. Okida, A. Onouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 micron Nd:YVO4 bounce laser,” Opt. Commun. 277, 125–129 (2007). [CrossRef]
  17. A. E. Siegman, Lasers (University Science Books, 1986), pp. 301–303.
  18. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000). [CrossRef]
  19. P. J. Hardman, W. A. Clarkson, G. J. Friel, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,” IEEE J. Quantum Electron. 35, 647–655 (1999). [CrossRef]
  20. S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43, 4753–4767 (2004). [CrossRef]
  21. V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998). [CrossRef]
  22. A. Sennaroglu, “Influence of neodymium concentration on the strength of thermal effects in continuous-wave Nd:YVO4 at 1064 nm,” Opt. Quantum Electron. 32, 1307–1317(2000). [CrossRef]
  23. S. A. Payne, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994). [CrossRef]
  24. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34, 900–909 (1998). [CrossRef]
  25. L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ crystals. Part 2: YVO4, GdVO4, and Sr(PO4)3F,” Appl. Phys. B 67, 549–553 (1998). [CrossRef]
  26. R. Lisiecki, P. Solarz, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Lukasiewicz, “Optical losses in YVO4:RE (RE=Nd3+, Er3+, Tm3+) laser crystals,” Laser Phys. 16, 303–311(2006). [CrossRef]
  27. G. Smith and M. J. Damzen, “Spatially-selective amplified spontaneous emission derived from an ultrahigh gain solid-state amplifier,” Opt. Express 14, 3318–3323 (2006). [CrossRef]
  28. G. Turri, H. P. Jenssen, F. Cornachia, M. Tonelli, and M. Bass, “Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals,” J. Opt. Soc. Am. B 26, 2084–2088(2009). [CrossRef]
  29. X. Yan, M. Gong, F. He, Q. Liu, and D. Wang, “Numerical modeling of the thermal lensing effect in a grazing-incidence laser,” Opt. Commun. 282, 1851–1857 (2009). [CrossRef]
  30. J. C. Bermudez G., V. J. Pinto-Robledo, A. V. Kir’yanov, and M. J. Damzen, “The thermo-lensing effects in a grazing-incidence, diode-side-pumped Nd:YVO4 laser,” Opt. Commun. 210, 75–82 (2002).
  31. X. Yan, L. Huang, Q. Liu, F. He, D. Wang, and M. Gong, “2 MHz AO Q-switched grazing-incidence laser with 3 at. % Neodymium doped Nd:YVO4,” IEEE J. Quantum Electron. 44, 1164–1170 (2008). [CrossRef]
  32. J. H. Garcia-Lopez, V. Aboites, A. V. Kir’yanov, S. Holmgren, and M. J. Damzen, “Experimental study and modelling of a diode-side-pumped Nd:YVO4 laser,”Opt. Commun. 201, 425–430 (2002). [CrossRef]
  33. Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid processes,” IEEE J. Quantum Electron. 11, 613–620 (2005). [CrossRef]
  34. V. Lupei, “Efficiency enhancement and power scaling of Nd lasers,” Opt. Mater. (Amsterdam) 24, 353–368 (2003). [CrossRef]
  35. Using the data from Ref. [33], we estimate a fluorescence lifetime of 83 μs for 1.1 at. % Nd:YVO4.
  36. J. W. Kim, I. O. Musgrave, M. J. Yarrow, and W. A. Clarkson, “Simple technique for measuring the energy-transfer-upconversion parameter in solid-state laser materials,” in CLEO/Europe and IQEC 2007 Conference Digest (Optical Society of America, 2007), paper CA_40.
  37. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14, 10528–10536 (2006). [CrossRef]
  38. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2009).
  39. Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” in Conference on Lasers and Electro-Optics/QELS Conference (OSA, 2007), 1–5, 1524–1525.
  40. COMSOL Multiphysics, a finite element analysis software by COMSOL, http://www.comsol.com .
  41. In [15], similarly to [32], there was the same difference between λp and the nominal value of the pump wavelength (808.0 nm).
  42. The bounce angle θ=7° in Ref. [15] and not 9°.
  43. J. Morgenweg and K. S. E. Eikma, “Tailored pulse sequences from an 880 nm pumped Nd:YVO4 bounce amplifier,” Opt. Lett. 37, 208–210 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited