OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2199–2212

How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices

Lukas G. Helt, Marco Liscidini, and John E. Sipe  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 2199-2212 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002199


View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present equations for the power generated via spontaneous (quantum) and stimulated (classical) nonlinear optical processes in integrated devices. Equations for the same structure and same order process are derived from the same Hamiltonian, allowing for direct and easy comparison including the ability to estimate the efficiency of a quantum process based solely on experimental data from a classical process in the same device. We show that, in the CW limit and under the undepleted pump approximation, the average energy of a generated photon divided by a characteristic time plays the role of the classical “seed” signal in a quantum process, and that extending the length of a structure or taking advantage of a resonant cavity does not enhance spontaneous processes the same way as stimulated processes.

© 2012 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 1, 2012
Manuscript Accepted: June 5, 2012
Published: August 1, 2012

Citation
Lukas G. Helt, Marco Liscidini, and John E. Sipe, "How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices," J. Opt. Soc. Am. B 29, 2199-2212 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-2199


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  2. C. Monat, A. Clark, C. Xiong, C. Grillet, G. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Correlated photon-pair generation in an ultra-compact silicon photonic crystal waveguide,” in CLEO:2011, Baltimore (2011), paper PDPC4.
  3. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
  4. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006). [CrossRef]
  5. M. B. Nasr, S. Carrasco1, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008). [CrossRef]
  6. E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett. 108, 213902 (2012).
  7. C. Liang, K. F. Lee, M. Medic, and P. Kumar, “Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors,” Opt. Express 15, 1322–1327 (2007). [CrossRef]
  8. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys Rev. Lett. 108, 153605 (2012).
  9. Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008). [CrossRef]
  10. L. G. Helt, E. Y. Zhu, M. Liscidini, L. Qian, and J. E. Sipe, “Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber,” Opt. Lett. 34, 2138–2140 (2009). [CrossRef]
  11. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32, 826–828 (2007). [CrossRef]
  12. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004). [CrossRef]
  13. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, 1975).
  14. A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001). [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2006).
  16. E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79, 023840 (2009). [CrossRef]
  17. C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbox, T. Zijlstra, V. Zsiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98, 051101 (2011). [CrossRef]
  18. M. Ferrera, L. Razzari1, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photon. 2, 737–740 (2008). [CrossRef]
  19. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008). [CrossRef]
  20. J. E. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008).
  21. Z. Yang, and J. E. Sipe, “Generating entangled photons via enhanced spontaneous parametric downconversion in AlGaAs microring resonators,” Opt. Lett. 32, 3296–3298 (2007). [CrossRef]
  22. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25, 554–556 (2000). [CrossRef]
  23. L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett. 35, 3006–3008 (2010). [CrossRef]
  24. Y. S. Kim and M. E. Noz, Phase Space Picture of Quantum Mechanics (World Scientific, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited