OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2275–2281

Group velocity and nonlocal energy transport velocity in finite photonic structures

M. de Dios-Leyva and Julio C. Drake-Pérez  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2275-2281 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have derived an explicit relation between the group delay velocity vgd(ω), determined by the slope of the dispersion curves, and the nonlocal energy transport velocity vE(ω) in a lossless, finite, one-dimensional photonic crystal. Using this relation, we find a simple link between vgd(ω) and the group velocity vg(ω)(ω) defined in terms of the electromagnetic dwell time. It is shown that vE(ω)vgd(ω) for any frequency and vE(ω)=vgd(ω)=vg(ω)(ω) at the resonance frequencies of the transmission coefficient. It was established that the band structure of a finite periodic crystal is of great importance to describe and understand the properties of these velocities. In particular, it was shown that the occurrence of superluminal group delay velocities in these structures is closely related to the existence of null gaps in their dispersion relation. Calculations performed for a half-wave-quarter-wave stack show that the energy velocity remains always subluminal.

© 2012 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(350.5500) Other areas of optics : Propagation
(350.7420) Other areas of optics : Waves
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: March 16, 2012
Revised Manuscript: July 4, 2012
Manuscript Accepted: July 4, 2012
Published: August 3, 2012

M. de Dios-Leyva and Julio C. Drake-Pérez, "Group velocity and nonlocal energy transport velocity in finite photonic structures," J. Opt. Soc. Am. B 29, 2275-2281 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  3. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  4. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996). [CrossRef]
  5. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  6. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A 3, 450 (1970). [CrossRef]
  7. P. Y. Chen, R. C. McPhedran, C. M. de Sterke, C. G. Poulton, A. A. Asatryan, L. C. Botten, and M. J. Steel, “Group velocity in lossy periodic structured media,” Phys. Rev. A 82, 053825 (2010). [CrossRef]
  8. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. M. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E 63, 036610 (2001). [CrossRef]
  9. N. Le Thomas and R. Houdré, “Group velocity and energy transport velocity near the band edge of a disordered coupled cavity waveguide: an analytical approach,” J. Opt. Soc. Am. B 27, 2095–2101 (2010). [CrossRef]
  10. G. Torrese, J. Taylor, T. J. Hall, and P. Mégret, “Effective-medium theory for energy velocity in one-dimensional finite lossless photonic crystals,” Phys. Rev. E 73, 066616 (2006). [CrossRef]
  11. G. Torrese, J. Taylor, H. P. Schriemer, and M. Cada, “Energy transport through structures with finite electromagnetic stop gaps,” J. Opt. A 8, 973–980 (2006). [CrossRef]
  12. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979). [CrossRef]
  13. W. Frias, A. Smolyakov, and A. Hirose, “Non-local energy transport in tunneling and plasmonic structures,” Opt. Express 19, 15281–15296 (2011). [CrossRef]
  14. M. de Dios-Leyva and O. E. González-Vasquez, “Band structure and associated electromagnetic fields in one-dimensional photonic crystals with left-handed materials,” Phys. Rev. B 77, 125102 (2008). [CrossRef]
  15. M. Centini, C. Sabilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999). [CrossRef]
  16. R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, 1992).
  17. H. G. Winful, “Group delay, stored energy, and the tunneling of evanescent electromagnetic waves,” Phys. Rev. E 68, 016615 (2003). [CrossRef]
  18. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1960).
  19. L. D. Landau and E. M. Lifschitz, Quantum Mechanics, Nonrelativistic Theory (Pergamon, 1981).
  20. T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, “Confined modes in finite-size photonic crystals,” Phys. Rev. B 72, 045126 (2005). [CrossRef]
  21. M. de Dios-Leyva and J. C. Drake-Pérez, “Properties of the dispersion relation in finite one-dimensional photonic crystals,” J. Appl. Phys. 109, 103526 (2011). [CrossRef]
  22. H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox,” Phys. Rep. 436, 1–69 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited