OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2297–2308

Coupled plasmon-exciton induced transparency and slow light in plexcitonic metamaterials

Ali Panahpour, Yaser Silani, Marzieh Farrokhian, Andrei V. Lavrinenko, and Hamid Latifi  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2297-2308 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002297


View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Classical analogues of the well-known effect of electromagnetically induced transparency (EIT) in quantum optics have been the subject of considerable research in recent years from microwave to optical frequencies, because of their potential applications in slow light devices, studying nonlinear effects in low-loss nanostructures, and development of low-loss metamaterials. A large variety of plasmonic structures has been proposed for producing classical EIT-like effects in different spectral ranges. The current approach for producing plasmon-induced transparency is usually based on precise design of plasmonic “molecules,” which can provide specific interacting dark and bright plasmonic modes with Fano-type resonance couplings. In this paper, we show that classical interactions of coupled plasmonic and excitonic spherical nanoparticles (NPs) can result in much more effective transparency and slow light effects in metamaterials composed of such coupled NPs. To reveal more details of the wave-particle and particle-particle interactions, the electric field distribution and field lines of Poynting vector inside and around the NPs are calculated using the finite element method. Finally, using extended Maxwell Garnett theory, we study the coupled-NP-induced transparency and slow light effects in a metamaterial comprising random mixture of silver and copper chloride (CuCl) NPs, and more effectively in a metamaterial consisting of random distribution of coated NPs with CuCl cores and aluminum shells in the UV region.

© 2012 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(290.4020) Scattering : Mie theory
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: February 22, 2012
Revised Manuscript: June 30, 2012
Manuscript Accepted: July 7, 2012
Published: August 3, 2012

Citation
Ali Panahpour, Yaser Silani, Marzieh Farrokhian, Andrei V. Lavrinenko, and Hamid Latifi, "Coupled plasmon-exciton induced transparency and slow light in plexcitonic metamaterials," J. Opt. Soc. Am. B 29, 2297-2308 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2297

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited