OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2320–2328

Lu3Ga5O12 crystal: exploration of new laser host material for the ytterbium ion

Kui Wu, Liangzhen Hao, Huaijin Zhang, Haohai Yu, Yicheng Wang, Jiyang Wang, Xueping Tian, Zhichao Zhou, Junhai Liu, and Robert I. Boughton  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2320-2328 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (990 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A ytterbium (Yb) doped lutetium gallium garnet (Yb:Lu3Ga5O12, Yb:LuGG) single crystal has been successfully grown by the optical floating-zone method for the first time to our knowledge. Its thermal properties, including specific heat, thermal expansion coefficient, and thermal diffusion coefficient, were measured, and the thermal conductivity was determined to be 4.94Wm1K1 at room temperature. The absorption and fluorescence spectra were measured at room temperature. The stimulated emission cross-sections were calculated using the reciprocity method and Fuchtbauer–Ladenburg formula, respectively. Continuous-wave (CW) laser oscillation of the Yb:LuGG crystal was also demonstrated with a 971 nm diode laser used as the pump source, generating an output power of 3.1 W with a slope efficiency of 44%. The results of our study indicate that the Yb:LuGG crystal is a promising new laser medium, and it is expected to be comparable to the most widely used material, Yb:YAG.

© 2012 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(160.3380) Materials : Laser materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 29, 2012
Revised Manuscript: July 3, 2012
Manuscript Accepted: July 11, 2012
Published: August 6, 2012

Kui Wu, Liangzhen Hao, Huaijin Zhang, Haohai Yu, Yicheng Wang, Jiyang Wang, Xueping Tian, Zhichao Zhou, Junhai Liu, and Robert I. Boughton, "Lu3Ga5O12 crystal: exploration of new laser host material for the ytterbium ion," J. Opt. Soc. Am. B 29, 2320-2328 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. P. Bour, D. B. Gilbert, K. B. Fabian, J. P. Bednarz, and M. Ettenberg, “Low degradation rate in strained InGaAs/AlGaAs single quantum well lasers,” IEEE Photon. Technol. Lett. 2, 173–174 (1990). [CrossRef]
  2. S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, and R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993). [CrossRef]
  3. W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1296 (2000). [CrossRef]
  4. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991). [CrossRef]
  5. J. Ye, L. S. Ma, and J. L. Hall, “High-resolution frequency standard at 1030 nm for Yb:YAG solid-state lasers,” J. Opt. Soc. Am. B 17, 927–931 (2000). [CrossRef]
  6. T. Y. Fan, S. Klunk, and G. Henein, “Diode-pumped Q-switched Yb:YAG laser,” Opt. Lett. 18, 423–425 (1993). [CrossRef]
  7. L. Zhang, P. Shi, and L. Li, “Semianalytical thermal analysis of rectangle Nd:GGG in heat capacity laser,” Appl. Phys. B 101, 137–142 (2010). [CrossRef]
  8. H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, X. Y. Zhang, and M. H. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35, 1801–1803 (2010). [CrossRef]
  9. K. Wu, B. Yao, H. J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, “Growth and properties of Nd:Lu3Ga5O12 laser crystal by floating zone method,” J. Cryst. Growth 312, 3631–3636 (2010). [CrossRef]
  10. M. Grinberg, B. Kuklinski, K. Wisniewski, C. Koepke, T. Łukasiewicz, J. Kisielewski, M. Swirkowicz, and A. Suchocki, “Spectroscopy of lanthanum lutetium gallium garnet crystals doped with chromium,” J. Opt. Soc. Am. B 20, 577–584 (2003). [CrossRef]
  11. A. Anedda, C. M. Carbonaro, D. Chiriu, P. C. Ricci, M. Aburish-Hmidat, M. Guerini, P. G. Lorrai, and E. Fortin, “Compositional tuning of photoluminescence properties in Nd-doped YAG–YSGG mixed structures,” IEEE J. Quantum Electron. 42, 563–569 (2006). [CrossRef]
  12. D. P. Ma and J. P. Zhang, “Microscopic theory of pressure effects on the energy spectra of the tunable laser crystal Gd3Sc2Ga3O12:Cr3+,” Phys. Rev. B 68, 054111 (2003). [CrossRef]
  13. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34, 151–153 (2009). [CrossRef]
  14. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010). [CrossRef]
  15. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007). [CrossRef]
  16. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746–4748 (2011). [CrossRef]
  17. M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hadrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tunnermann, J. Rossbach, M. Drescher, and F. Tavella, “Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett. 36, 2456–2458 (2011). [CrossRef]
  18. S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003). [CrossRef]
  19. X. Y. Zhang, A. Brenier, Q. P. Wang, Z. P. Wang, J. Chang, P. Li, S. J. Zhang, S. H. Ding, and S. T. Li, “Passive Q-switching characteristics of Yb3+:Gd3Ga5O12 crystal,” Opt. Express 13, 7708–7719 (2005). [CrossRef]
  20. H. H. Yu, K. Wu, B. Yao, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. D. Zhang, Z. Y. Wei, Z. G. Zhang, X. Y. Zhang, and M. H. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron. 46, 1689–1695 (2010). [CrossRef]
  21. Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34, 3316–3318 (2009). [CrossRef]
  22. G. Shirinyan, K. L. Ovanesyan, A. Eganyan, A. G. Petrosyan, C. Pedrini, C. Dujardin, I. Kamenskikh, and N. Guerassimova, “X-ray and optical studies of ytterbium-doped gallium garnets,” Nucl. Instrum. Methods A 537, 134–138 (2005). [CrossRef]
  23. X. M. Liu, L. Zhu, L. L. Wang, C. C. Yu, and J. Lin, “Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application,” J. Vac. Sci. Technol. B 28, 490–494 (2010). [CrossRef]
  24. W. P. Liu, Q. L. Zhang, L. H. Ding, D. L. Sun, J. Xiao, and S. T. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B (Amsterdam) 403, 3403–3405 (2008). [CrossRef]
  25. A. Novoselov, A. Yoshikawa, M. Nikl, J. Pejchal, and T. Fukuda, “Study on crystal growth and scintillating properties of Bi-doped Lu3Ga5O12,” J. Cryst. Growth 292, 236–238 (2006). [CrossRef]
  26. S. M. Koohpayeh, D. Fort, A. Bradshaw, and J. S. Abell, “Thermal characterization of an optical floating zone furnace: a direct link with controllable growth parameters,” J. Cryst. Growth 311, 2513–2518 (2009). [CrossRef]
  27. X. D. Xu, Z. W. Zhao, J. Xu, and P. Z. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1−x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun. 130, 529–532 (2004). [CrossRef]
  28. L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003). [CrossRef]
  29. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9, 2548–2553 (1970). [CrossRef]
  30. W. M. Koechner, Solid State Laser Engineering2nd ed.(Springer, 1988).
  31. A. Nakatsuka, A. Yoshiasa, and S. Takeno, “Site preference of cations and structural variation in Y3Fe5−xGaxO12 (0≤x≤5) solid solutions with garnet structure,” Acta Crystallogr. Sect. B 51, 737–745 (1995). [CrossRef]
  32. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005). [CrossRef]
  33. R. Gaume, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003). [CrossRef]
  34. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–114 (1986). [CrossRef]
  35. J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010). [CrossRef]
  36. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23, 676–683 (2006). [CrossRef]
  37. J. Dong, M. Bass, Y. L. Mao, P. Z. Deng, and F. X. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003). [CrossRef]
  38. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993). [CrossRef]
  39. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 3, 105–116 (1997). [CrossRef]
  40. G. J. Zhao, X. D. Xu, H. J. Li, J. Xu, Z. W. Zhao, X. M. He, H. Y. Pang, M. Y. Jie, and C. F. Yan, “Comparison of spectroscopic parameters of 15 at % Yb:YAlO3 and 15 at % Yb:Y3Al5O12,” J. Cryst. Growth 274, 106–112 (2005). [CrossRef]
  41. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908–1910 (2007). [CrossRef]
  42. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982). [CrossRef]
  43. J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Characteristics of a continuous-wave Yb:GdVO4 laser end pumped by a high-power diode,” Opt. Lett. 31, 2580–2582 (2006). [CrossRef]
  44. F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. P. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped largely tunable femtosecond Yb:Sr3Y(BO3)3 laser,” Opt. Lett. 27, 197–199 (2002). [CrossRef]
  45. S. Chenais, F. Balembois, F. Druon, G. L. Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers-part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40, 1217–1234 (2004). [CrossRef]
  46. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley VCH, 2008).
  47. J. Petit, B. Viana, P. Goldner, J. P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: experiments and modeling,” J. Appl. Phys. 108, 123108 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited