OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2379–2385

Control of two-atom entanglement with two thermal fields in coupled cavities

Li-Tuo Shen, Zhen-Biao Yang, Huai-Zhi Wu, Xin-Yu Chen, and Shi-Biao Zheng  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2379-2385 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002379


View Full Text Article

Enhanced HTML    Acrobat PDF (1171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamical evolution of a quantum system composed of two coupled cavities, each containing a two-level atom and a single-mode thermal field, is investigated under different conditions. The entanglement between the two atoms is controlled by the hopping strength and the detuning between the atomic transition and the cavities. We find that when the atomic transition is far off-resonant with both the eigenmodes of the coupled-cavity system, the maximally entangled state for the two atoms can be generated with the initial state in which one atom is in the ground state and the other is in the excited state. When both the two atoms are initially in the excited state, the entanglement exhibits periodical sudden birth and death. By choosing appropriate parameter values, the initial maximal entanglement of the two atoms can be frozen. The relation between the concurrence and the cooperative parameter is calculated.

© 2012 Optical Society of America

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Quantum Optics

History
Original Manuscript: May 8, 2012
Revised Manuscript: July 6, 2012
Manuscript Accepted: July 7, 2012
Published: August 9, 2012

Citation
Li-Tuo Shen, Zhen-Biao Yang, Huai-Zhi Wu, Xin-Yu Chen, and Shi-Biao Zheng, "Control of two-atom entanglement with two thermal fields in coupled cavities," J. Opt. Soc. Am. B 29, 2379-2385 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2379


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. O. Scully and M. S. Zubairy, Quantum Optics, (Cambridge University, 1997).
  2. V. Bužek, G. Adam, and G. Drobný, “Quantum state reconstruction and detection of quantum coherences on different observation levels,” Phys. Rev. A 54, 804–820 (1996). [CrossRef]
  3. S. Bose, I. Fuentes-Guridi, P. L. Knight, and V. Vedral, “Subsystem purity as an enforcer of entanglement,” Phys. Rev. Lett. 87, 050401 (2001). [CrossRef]
  4. M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101 (2002). [CrossRef]
  5. B. Zhang, “Entanglement between two qubits interacting with a slightly detuned thermal field,” Opt. Commun. 283, 4676–4679 (2010). [CrossRef]
  6. F. A. A. El-Orany, “Exact treatment for the entanglement of the multiphoton two-qubit system with the single-mode thermal field,” J. Opt. Soc. Am. B 28, 2087–2097 (2011). [CrossRef]
  7. L. Zhou, H. S. Song, and C. Li, “Entanglement induced by a single-mode thermal field and the criteria for entanglement,” J. Opt. B 4, 425–429 (2002). [CrossRef]
  8. X. X. Yi, L. Zhou, and H. S. Song, “Entangling two cavity modes via a two-photon process,” J. Phys. A: Math. Gen. 37, 5477–5484 (2004). [CrossRef]
  9. L. S. Aguiar, P. P. Munhoz, A. Vidiella-Barranco, and J. A. Roversi, “The entanglement of two dipole–dipole coupled atoms in a cavity interacting with a thermal field,” J. Opt. B 7, S769–S771 (2005). [CrossRef]
  10. X. Y. Wang, and X. S. Chen, “Coherence-enhanced and -controlled entanglement of two atoms in a single-mode thermal field,” J. Phys. B 39, 3805–3814 (2006). [CrossRef]
  11. Z. H. Musslimani, and Y. Ben-Aryeh, “Quantum phase distribution of thermal phase-squeezed states,” Phys. Rev. A 57, 1451–1453 (1998). [CrossRef]
  12. M. B. Plenio, and S. F. Huelga, “Entangled Light from white noise,” Phys. Rev. Lett. 88, 197901 (2002). [CrossRef]
  13. L. Zhou, X. X. Yi, H. S. Song, and Y. Q. Quo, “Entanglement of two atoms through different couplings and thermal noise,” J. Opt. B 6, 378–382 (2004). [CrossRef]
  14. S. R. J. Patrick, Y. Yang, Z. Q. Yin, and F. L. Li, “Entangling two multiatom clusters via a single-mode thermal field,” Int. J. Mod. Phys. B 25, 2681–2696 (2011). [CrossRef]
  15. V. Eremeev, V. Montenegro, and M. Orszag, “Thermally generated long-lived quantum correlations for two atoms trapped in fiber-coupled cavities,” Phys. Rev. A 85, 032315 (2012). [CrossRef]
  16. V. Montenegro, V. Eremeev, and M. Orszag, “Entanglement of two distant qubits driven by thermal environments,” Phys. Scr. T147, 014022 (2012). [CrossRef]
  17. S. B. Zheng, “Quantum-information processing and multiatom-entanglement engineering with a thermal cavity,” Phys. Rev. A 66, 060303(R) (2002).
  18. S. B. Zheng, “Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,” Phys. Rev. A 68, 035801 (2003). [CrossRef]
  19. S. B. Zheng, “Macroscopic superposition and entanglement for displaced thermal fields induced by a single atom,” Phys. Rev. A 75, 032114 (2007). [CrossRef]
  20. C. D. Ogden, E. K. Irish, and M. S. Kim, “Dynamics in a coupled-cavity array,” Phys. Rev. A 78, 063805 (2008). [CrossRef]
  21. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008). [CrossRef]
  22. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef]
  23. Z. B. Yang, H. Z. Wu, Y. Xia, and S. B. Zheng, “Effective dynamics for two-atom entanglement and quantum information processing by coupled cavity QED systems,” Eur. Phys. J. D 61, 737–744 (2011). [CrossRef]
  24. Z. Q. Yin, and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007). [CrossRef]
  25. J. Song, Y. Xia, H. S. Song, and B. Liu, “Four-dimensional entangled state generation in remote cavities,” Eur. Phys. J. D 50, 91–96 (2008). [CrossRef]
  26. S. Y. Ye, Z. B. Yang, S. B. Zheng, and A. Serafini, “Coherent quantum effects through dispersive bosonic media,” Phys. Rev. A 82, 012307 (2010). [CrossRef]
  27. M. Yönaç, and J. H. Eberly, “Qubit entanglement driven by remote optical fields,” Opt. Lett. 33, 270–272 (2008). [CrossRef]
  28. M. Yönaç, T. Yu, and J. H. Eberly, “Sudden death of entanglement of two Jaynes–Cummings atoms,” J. Phys. B 39, S621–S625 (2006). [CrossRef]
  29. Z. Ficek, and R. Tanaś, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008). [CrossRef]
  30. C. E. López, G. Romero, F. Lastra, E. Solano, and J. C. Retamal, “Sudden birth versus sudden death of entanglement in multipartite systems,” Phys. Rev. Lett. 101, 080503 (2008). [CrossRef]
  31. H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473, 190–193 (2011). [CrossRef]
  32. W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A 84, 010301(R) (2011).
  33. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010). [CrossRef]
  34. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  35. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited