OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2431–2437

Scanning optical microscopy modeling in nanoplasmonics

Alexandre Teulle, Renaud Marty, Sviatlana Viarbitskaya, Arnaud Arbouet, Erik Dujardin, Christian Girard, and Gérard Colas des Francs  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2431-2437 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002431


View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One of the main purposes of nanoplasmonics is the miniaturization of optical and electro-optical components that could be integrable in coplanar geometry. In this context, we propose a numerical model of a polarized scanning optical microscope able to faithfully reproduce both photon luminescence and temperature distribution images associated with complex plasmonic structures. The images are computed, pixel by pixel, through a complete self-consistent scheme based on the Green dyadic functions (GDF) formalism. The basic principle consists in the numerical implementation of a realistic three-dimensional light beam acting as a virtual light tip able to probe the volume of plasmonic structures. Two different acquisition procedures, respectively based on two-photon luminescence emission and local heating, are discussed in the case of gold colloidal particles.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optoelectronics

History
Original Manuscript: June 4, 2012
Manuscript Accepted: July 7, 2012
Published: August 21, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Alexandre Teulle, Renaud Marty, Sviatlana Viarbitskaya, Arnaud Arbouet, Erik Dujardin, Christian Girard, and Gérard Colas des Francs, "Scanning optical microscopy modeling in nanoplasmonics," J. Opt. Soc. Am. B 29, 2431-2437 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2431


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  2. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]
  3. D. O’Connor and A. V. Zayats, “Data storage: the third plasmonic revolution,” Nat. Nanotechnol. 5, 482–483 (2010). [CrossRef]
  4. E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near—field optical antenna resonances,” Nature Nanotechnology 6, 588–593 (2011). [CrossRef]
  5. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef]
  6. C. Girard, and E. Dujardin, “Near-field optical properties of top-down and bottom-up nanostructures,” J. Opt. A 8, S73–S86 (2006). [CrossRef]
  7. J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, “Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures,” Opt. Commun. 137, 46–50 (1997). [CrossRef]
  8. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64, 045411 (2001). [CrossRef]
  9. J. -C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. -L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004). [CrossRef]
  10. M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73, 155416 (2006). [CrossRef]
  11. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011). [CrossRef]
  12. S. Lin, M. Li, E. Dujardin, C. Girard, and S. Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005). [CrossRef]
  13. J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large area quality plasmonic oligomer fabricated by angle-controlled colloidal nanolithography,” ACS Nano 5, 9009–9016 (2011). [CrossRef]
  14. M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas Des Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned cristalline Ag nanowires,” ACS Nano 5, 5874–5880 (2011). [CrossRef]
  15. A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle networks for light and heat concentration,” ACS Nano 6, 3434–3440 (2012). [CrossRef]
  16. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  17. J. Nelayah, M. Kociak, O. Stephan, N. Geuquet, L. Henrard, F. J. Garcia de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010). [CrossRef]
  18. B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79, 041401(R) (2009). [CrossRef]
  19. L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, “Resonant wedge-plasmon modes in single-cristalline gold nanoplatelets,” Phys. Rev. B 83, 195433 (2011). [CrossRef]
  20. A. Dereux, E. Devaux, J. C. Weeber, J. P. Goudonnet, and C. Girard, “Direct interpretation of near-field optical images,” J. Microsc. 202, 320–331 (2001). [CrossRef]
  21. R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989). [CrossRef]
  22. D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994). [CrossRef]
  23. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S.-H. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23, 823–833 (2006). [CrossRef]
  24. A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010). [CrossRef]
  25. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008). [CrossRef]
  26. K. Imura, T. Nagahara, and H. Okamoto, “Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near–field microscopy,” J. Phys. Chem. B 108, 16344–16347 (2004). [CrossRef]
  27. H. Okamoto and K. Imura, “Near-field optical imaging of enhanced electric field and plasmon waves in metal nanostructures,” Prog. Surf. Sci. 84, 199–229 (2009). [CrossRef]
  28. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005). [CrossRef]
  29. P. Ghenuche, S. Cherukulappurath, and R. Quidant, “Mode mapping of plasmonic stars using TPL microscopy,” New J. Phys. 10, 105013 (2008). [CrossRef]
  30. S. M. Novikov, J. Beermann, T. Sondergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon imaging of field enhancement by groups of gold nanostrip antennas,” J. Opt. Soc. Am. B 26, 2199–2203 (2009). [CrossRef]
  31. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 136805 (2010). [CrossRef]
  32. O. J. F. Martin, C. Girard, and A. Dereux, “Generalized propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995). [CrossRef]
  33. D. Barchiesi, C. Girard, O. J. F. Martin, D. Van Labeke, and D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: A comparative study of different method,” Phys. Rev. E 54, 4285–4292 (1996). [CrossRef]
  34. T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006). [CrossRef]
  35. C. Girard, E. Dujardin, G. Baffou, and R. Quidant, “Shaping and manipulation of light fields with bottom–up plasmonic structures,” New J. Phys. 10, 105016–105022 (2008). [CrossRef]
  36. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999). [CrossRef]
  37. P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I,” J. Opt. Soc. Am. A 12, 2136–2144 (1995). [CrossRef]
  38. P. Török, P. Varga, A. Konkol, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. II,” J. Opt. Soc. Am. A 13, 2232–2138 (1996). [CrossRef]
  39. B. Nikoobakht and M. A. El–Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003). [CrossRef]
  40. F. Bonell, A. Sanchot, E. Dujardin, R. Péchou, C. Girard, M. Li, and S. Mann, “Processing and near-field optical properties of self–assembled plasmonic nanoparticles networks,” J. Chem. Phys. 130, 034702 (2009). [CrossRef]
  41. G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009). [CrossRef]
  42. G. Baffou, R. Quidant, and F. J. Garcia de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010). [CrossRef]
  43. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 165424 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited